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Introduction

These lectures are an attempt to present an overview of certain facets of the theory
of dynamical systems. This is already a vast subject and currently under intense
research effort. Our objects of interest are in the general sub areas of ergodic theory
and symbolic dynamics. Broadly speaking the former is the probabilistic form of
dynamics while the latter deals with the asymptotic properties of sequences from a
finite alphabet satisfying suitable local restrictions. The “suitability” is determined
often by an other dynamical system that gives rise to the symbolic system. Some
of the sequences arise naturally from smooth dynamical systems like differential
equations defining a flow on a manifold whereas others come from lattice models
in statistical mechanics. Apart from resolving questions in the initial (say smooth)
framework the sequence space formulation has turned out to be of interest by itself.

The material here is mostly introductory and emphasis is on treatment of a
few key examples. To get a coherent picture we need to present along the way
some basic theory from the core the dynamical systems. The part that deals with
the thermodynamic fromalism is naturally motivated and quite close to ideas in
theoretical physics. We also show the relation of symbolic dynamics to automata
theory as well as some connections to information theory.

Symbolic dynamical systems that will be considered later on are Z%-actions
and within them the cellular automata. These form an extremely rich and deep
class of systems. They provide the full spectrum of examples from simple tran-
sient dynamics to chaotic and complex self-organizing dynamics therby providing a
testing ground for advanced theoretical notions. Their “physics-like” behavior has

stimulated a large amount research part of which will be reviewed.
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Caveat: This is still just a set of lecture notes. Typos and mild illogicalities are
part of the deal. Effort is made to avoid major blunders but if any such is spotted
it should in Chung’s ([Ch]) spirit be part of the challenge to the reader...

References. At the end of the sections we collect some key references to the material
presented. The actual literature addresses are found at the end in the Bibliography

section.

0.1. A few problems

To get the flavor of the topic let us consider some of the basic problems.

Example 0.1.: Suppose that we form a set X of bi-infinite sequences on the integers
by assigning one of the symbols 0 and 1 at each integer with the extra requirement
that two ones cannot be next to each other. X is clearly non-empty but how big is
it? It is easy to see that it is uncountable but is there a natural way of measuring
it's size? If one considers the number of such finite sequences on {—N,..., N} is
the growth of their number polynomial or exponential in N? Note that without the
exclusion of consecutive ones the growth is exponential so it cannot be any faster
in the restricted case. Turns out that there is a general procedure to resolve this
question. Another line of questions could be this: what is a typical element like?
Are there elements which imitate all of the others in the sense of having a dense
orbit under the coordinate shift?

Example 0.2.: On the square integral lattice in the plane, Z2, we could do some-
thing analogous to the first example: allow all arrangements of 0’s and 1’s on this
lattice except those where two ones are next to each other either horizontally of
vertically, Again the set of these configurations is uncountable and one can ask the
same question about the size as in Example 1. Nobody knows the answer! (except
numerically) Interestingly the difficulty is not just in the two-dimensionality: the
same rule on the triangular lattice can be analyzed.

The growth rate that we were after in these two examples is closely related to the
entropy of the system. It is a key global characteristic of a dynamical system since
it captures the degree of (pseudo) randomness in the system.

Example 0.3.: Consider again the set of all sequences of of zeros and ones one the
integers. Define a block map by requiring that it maps 001, 011, 100, and 110 — 1
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and the other four nearest neighbor binary triples to 0. Apply this rule at each
consecutive (overlapping) block of three in a given bi-infinite sequence of zeros and
ones to obtain an other such sequence. Clearly the map from sequences to sequences
is uniquely determined by the block description. The global map is onto but not
1-1. It is example of a one-dimensional cellular automaton. Turns out that the
evolution under the iteration of this cellular automaton is “chaotic” in the usual
sense of being sensitive to initial state. This that can (and will) be made rigorous.
This rule is as a factor in many other cellular automata exhibiting more complex
behavior and its higher dimensional version can be analyzed to a good extent. An
illustration of an evolution from a uniform Bernoulli distributed initial state on a
torus is in Figure 1 (top row is the initial state and time runs downwards).

o = =i
o L

J

Figure 0.1. Evolution of the elementary cellular automaton Rule 90.

Example 0.4: The Game of Life ([BCG]). With Conway’s insight one can propose
the following cellular automaton rule even without experimenting with it. Consider
again zeros and ones on Z? and let the update of the center in a 3 x 3 neighborhood
be 1 if it was 0 and exactly three of it’s eight neighbors are ones. If not keep the
zero. If the center was one and either two or three of its neighbors are ones keep
it as one otherwise flip. Apart from having an entertaining aspect to it (watch
it!) this rule has depth. It has been shown to be capable of universal computation
i.e. it is possible to implement a Turing machine in this rule thereby computing
any recursive function (again see [BCG]|, the implementation is not efficient but
serves the purpose of theoretical analysis). Since the halting problem of the Turing
machine is undecidable we thus see that decidability issue enters to the study of
symbolic dynamics early on.
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1. Basic ergodic theory

1.1. First notions and the ergodic theorem

Ergodic theory is the study of asymptotic properties of measurable dynamical sys-
tems. In order to do symbolic dynamics we need the basic concepts of ergodic
theory.

Let X be a metric space and B its Borel o-algebra i.e. the collection of all subsets
which are Borel measurable. Suppose that the space X carries a measure g so that
the triple (X, B, )} is a measure space.

Definition 1.1.: A map T : X — X is a measurable transformation of the
space if T™'B = {z € X| Tz € B} is in B for any B € B. If moreover 4 (T'B) =
p(B) for all B € B the transformation is said to be measure preserving and y is
an invariant measure. The quadruple (X, B, p,T) is a (measurable) dynamical
system.

Note that the Definition does not assume that T is invertible. The key ingredient
here is the preservation of the space and the measure since they allow arbitrary
iteration of the map. Indeed one is usually interested in the asymptotic distribution
of the (bi-infinite) orbit of a point z, O(z) = {..., T %2, Tz, 2, Tz, T?z,.. .},
in the space X (or perhaps e.g. the one-sided orbit like the forward orbit O, (x) =
{a:,Ta:,Tza:, - }) If an orbit satisfies 7%z = z for some r and & > 1 we call = a
periodic point with period k. If £ = 1 then z is a fixed point. Physically one
should think X as the phase space of a system and T as the action of the physical
process on it.

If the measure is removed from the Definition we obtain just a topological
dynamical system. Even then interesting questions can be asked, typically about
the orbit structure. Periodic orbits are often of significance and so are dense orbits.
A system in which there is £ € X with a dense orbit is called topologically
transitive.

If the space X carries a differentiable structure say it is a Riemannian man-
ifold and T is a diffeomorphism the study of the system is usually called smooth
dynamics. In this context in particular it may become useful to replace T' by a one-
parameter semigroup of transformations {7;} each preserving the space X. {1} is
called a flow on X.



To be able to physically interpret the results one usually prefers the situation
where the measure p is a probability measure i.e. u(X) = 1. To get this it is natural
to require that X is compact. The existence of an invariant measure is a consequence
of Markov-Kakutani Fixed Point Theorem (or more elementary arguments). But
the problem of finding all invariant measures is in general highly non-trivial.

Example 1.2.: Consider the mapping of the unit interval X = [0,1) (with the
usual Borel o-algebra) defined by T : z — 2z (mod 1). It is easy to see that
the map preserves the Lebesque measure A. But it also preserves many singular
measures for example &g, the unit mass at origin. Can you find them all?

Example 1.3.: Let X be the unit circle and T rotation by an angle o, Alternatively
one can think of multiplication of complex numbers of absolute value one (or more
generally multiplication on any compact group). Again the Lebesque measure is
preserved. Depending on whether « is a rational or irrational multiple of 7 singular
measures may be preserved. The behavior of the system is critically dependent on
the irrationality of /. It is straightforward to see that rational orbits {T?z}>
will always be finite. But if /7 is irrational is the orbit dense in X7 Clearly if it
is dense for one # € X it is for all z. And one can ask more: is the orbit uniformliy
distributed in X i.e. does the orbit visit two intervals of equal length in X with
equal frequency?

Example 1.4.: Let X be as in Example 2.1. and

riom {3 ifz =0

Frac(l/z), ifz#0.
Here Frac denotes the decimal part of the argument: 1/x — |1/x|. This example is
motivated by continued fractions expansion. Since this transformation is important
in Diophantine approximation it was studied already by Gauss and although mea-
sures were not known at his time (around 1845) he figured out the absolutely con-
tinuous invariant measure (or rather the invariant density i.e. the Radon-Nikodym
derivative of the measure with respect to the Lebesque measure). Can you do that?

Example 1.5.: Suppose that {{(g;,p;)| ¢=1,...,n} are a particle’s coordinates
and momentum in R™ and the particle obeys Hamiltonian dynamics i.e. there
exists a function H : R?™ — R (which is typically the sum of kinetic and potential

energies) and
dg; 6H dp;  OH

E_Bp@’ E__Bql
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By fixing the total energy H one can restrict the action to a compact surface.
The equations above define a flow on this manifold. Moreover a standard result,
Liouville’s theorem, provides us with a (uniform) probability measure invariant
under the semigroup action. Hamiltonian mechanics is a rich source of dynamical
systems perhaps the simplest of them being the geodesic flow and the billiards.

In a way the starting point of modern dynamics is in the studies by Henri Poincaré
in the late 19*" century. He was instrumental in shifting the attention from the
behavior of individual orbits to the behavior of ensembles of orbits. For him one
in particular owe the Poincaré Recurrence Theorem:

Theorem 1.6.: Let (X,B,u,T) be a dynamical system and B € B, u(B) > 0.
Then p-almost all points of B return infinitely often to B under positive iteration
of T.

The notions above are some of the most fundamental ones which the ergodic theory
tries to develop further, We now proceed to introduce the key theorem of the
subject, the pointwise ergodic theorem.

Suppose that we are observing a physical system and we are interested in how much
time the system spends in a particular state B in the phase space X. We do not in
general know the probability of the system being in the state B but we can count
the frequency that it visits the state. Formally B € B and we can record the value
of the frequency (temporal density)

n—1
An(z) = % 3 x5 (T'z)
i=0

where g is the indicator function of the set B and z is the initial state of the
evolution. Suppose that we have (some) invariant probability measure 4 and thereby
we can talk about a dynamical system (X, B, u,T). It seems that in order for this
invariant measure to be physically relevant the frequency above should approach
the size of the set B as measured by g i.e. u(B). Obviously this cannot be true
for any invariant measure (think e¢.g. Example 1.2.) but it could hold under some
assumptions on the system. It was Ludwig Boltzmann’s idea that the ‘ergodic
hypothesis’ should be true ie. the spatial and temporal averages should agree
under mild assumptions on the system.

Definition 1.7.: The dynamical system (X, B, u, T') is ergodic if the only invariant
sets i.e. sets for which it holds that T"'B = B have u-measure zero or one.
Equivalently the only invariant measurable functions i.e. f(I'z) = f(z) for a.e. x
are constant functions.



The equivalence is simple: on one hand the function xp is invariant if B is so if
all invariant functions are constant u(B) is zero or one. On the other hand if T is
ergodic then the set B, = {x € X| f(z) > r} is measurable and invariant if f is
such. So u(B,) is zero or one. But if f is not constant x(B,) can be non-trivial, a
contradiction.

Remarks: 1. Intuitively ergodicity means that non-trivial subsets of the space
cannot be fixed by the transformation but they are moved around in some fashion.
This is a weak assumption but clearly a prerequisite for the ergodic hypothesis —
if nontrivial parts of the space could be fixed the principle could be immediately
violated. Alternatively one can think of ergodicity as indecomposability of the
transformation: it cannot be split into simpler disjoint actions on the same space.
2. It can be shown that the set of invariant measures is the convex hull of the
ergodic ones. If this set is a singleton the system is called uniguely ergodic.

Theorem 1.8.: Consider the dynamical system (X, B, u,T) and let B € B. Let
the frequency of visits to B by time n, An(x) be as above. Then for u-almost every
z € X the limit

Az) = nll)ngo A (z)
exists. If the system is ergodic then A(z) = u(B) p-almost surely.

Remarks: 1. Note that A(z) is necessarily an invariant function. Therefore if the
system is ergodic A(x) must be constant.

2. Note. that if the system (X, B, T, ) is ergodic and p(B) > 0 for any open ball
(suppose X is metric) then in particular p-almost every orbit visits any such ball
infinitely often and the orbit is dense in X. The converse is of course not true -
in general the density of an orbit says little about the frequency of its visits to an
open set.

Proof: Let A(z) = limsup,,_,, An(z) and A(z) analogously. We will show that

fX A(z)u(dz) < u(B). (L1)

Note if this can be shown then by considering the complement of B in X we will
also get

f Az)p(dz) > p(B).
X

But these two inequalities together imply that
| (4@~ A@) uda) 2 0
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which implies A = A p-almost surely as by the definition it holds that A(z) < A(z).
Along the way here we also get that

| Ate)uida) = ()
X

as well as the claim that A(z) almost surely agrees with p(3) in the ergodic case
(this is the only place where the ergodicity enters the argument).
Given € > 0 define for any = € X a convergence epoch as follows

7(z) = min {n > 0| Ax(z) > A(z) - €}.

Depending on whether 7(z) is uniformly bounded or not we argue two cases.
1. Suppose that 7(z) < M for p-almost every z € X for some finite M. Given
n > 0 divide the interval {0,1,2,...,n—1} into non-overlapping consecutive blocks

{l', Tz, szs T3$’ R T'r(:x)—lm}’ {ys Tya sz? T3y1 SRR T’r(y)—ly}’ S

where y = T7®)z and T7W)y is the starting point of the next block etc. On each
of these the density of visits to B is at least A(x) — ¢. Note that e.g. on the second
block the density is at least A(y) — ¢, but by the T-invariance of A this equals
to A(z) — €. By our assumption we can choose the lengths of these blocks to be
bounded by M. So on the entire interval the density of visits to B satisfies

n=M Ay -,

Ap(z) > "

where the term —M enters since we have no control over the length of the last block
except that we know it cannot exceed M. Integrating over the space this yields

5 e (- 2) ([

As T preserves y all the integrals on the left equal to [, xpdu = u(B). So by letting
n pass to infinity we get

;,L(B)E/X?fd,u-—e (1.2)

and (1.1) follows.

2. In case T is not uniformly bounded we fix €, define the bad set C' = {z €
X| 7(z) > M} where M is such that x(C) < e. We extend the test set B by defining
B’ = BUC and define 7/(z) to equal to 7(z) on C¢ and 1 on C. Using 7’ in the
the block argument above we decompose the orbit on {0,1,2,...,n — 1}. Through
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this argument we again obtain (purely combinatorially i.e. without the measure)
for A (z) = L -7 xp/(T"z) and for the original A the lower bound

A" Mz

Integrating as above we get (1.2) with B replaced by B’ on the left. Taking into
account that p(B’} < u(B) + € we capture (1.2) with 2e. |

Remark: This is neither the original proof by Birkhoff (1931) nor the classical
proof using maximal lemma by Garcia (1965). In some sense it is the most natural
proof and follows an idea of Kamae. With some further, more standard bookkeeping
this result can be generalized to its full form (first prove to non-negative, bounded
functions and then to the possibly unbounded positive and negative parts of a
general L!-function using monotone convergence). What results is known as the
Pointwise Ergodic Theorem (of Birkhoff):

Theorem 1.9.: Given a dynamical system (X, B, u,T) and an integrable function
S on (X,B,pu) (f5 |fldi < oc) it holds that

n—oo T 4

n—1
lim 1 Z f(Tiz) = f*(x) [t—a.S.
=0

where f* is an invariant integrable function. Moreover | x frdp = [ fdu and if
the system is ergodic then the function f* is p-almost surely constant.

Birkhoff’s theorem was preceded by a string of related results which are all implied
by this synthesis. As an illustration we present one of them, Borel’'s Theorem on
Normal Numbers.

Corollary 1.10.: Almost all numbers on [0,1) are normal to the base 2 i.e. the
frequency of ones in the binary expansion is 1/2.

Proof: Consider the dynamical system (X, B, A, T) defined in Example 1.2. T is
ergodic (exercise). Let X’ C X = [0,1) be the set of numbers with unique binary
expansion. Since X \ X’ is countable X' is of full measure.

Let 2 € X’ have the binary representation )2, a;277. Then

; 1, ifag, =1
X/2,) (T'z) = {o, ifa; =0

and the summation

n—1 )
> xuye (Ta)
=0

9



gives the number of ones within the first n digits in the representation. But Theorem
1.8. implies that

n—1

1 . 1
lim - T'z) = de = =
Jim ~ ?:0: xii/z,n (1°2) fx Xi/2,)(@)de = 5
almost surely with respect to the uniform (Lebesque) measure. |

Remark: There is nothing special about base 2, the same result holds for any inte-
gral base. However one can ask subtle questions about the simultaneous normality
to several bases. And one would also be interested in base-free analysis of the reals.
One vehicle for this is the continued fraction expansion above.

The Corollary also illustrates the important notion of genericity. A point z € X is
generic for (X, B, u, T) if the ergodic theorem holds along the the orbit from z i.e.
it gives the right average. In other words

n—1

%ZéTiI—)[J,

i=0

in the sense of weak convergence of measures. So normality is a generic property of
a real number. But our result does not say anything about any particular number
for example we do not know whether the decimals of 7 or e are equally frequent!

There is no general rate result to sharpen the ergodic theorem. If the dynamical
system is uniquely ergodic then the convergence is uniform.

Theorem 1.11.: (X, B,u,T) is uniquely ergodic if every € X is generic for u
and the Ergodic Theorem holds uniformly:

. 1 n—1 .
nll}nc}oHZf(Ta:)—/xfdu
for all f € C(X) uniformly in z.

Proof: If uniformity fails in the ergodic theorem for some ¢ then for some € > 0
and for all n there is z(n) such that

n—1

%Zg (T2 (n)) - /gdu

=0

> €.
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Let v, = 23—1 bTsz(n) S0 | [ gdvn — [ gdu| > €. Suppose v is some weak limit of
{va}. Tt is invariant but also | f gdv — [ gdu| > € which contradicts the uniqueness.
|

Example 1.12.: Consider the rotation {on the complex unit circle) of Example
2.3. Another way of declaring the rationality of the rotation is to say that a = e
is a root of unity i.e. there is ps.t. a? = 1. If f(z) = 2P then foT = f yet f is not
almost everywhere constant so the system isn’t ergodic.

If on the other hand a in not a root of unity pick an invariant function in
L? of the circle. Every L? function has a Fourier series so let f(z) = Y, an2™
Then f(T'z) = f(az) = >z ana™z". From the invariance of f we conclude that
an(a™—1) =0 for all n ie. f(z) = ag almost surely. Since indicator functions are
in L? we deduce that all invariant sets have measure either zero or one.

So the rotation on the circle is ergodic iff a/7 is irrational. This result an-
swers all the questions posed in Example 1.3. If o/ is irrational all the orbits are
uniformly distributed on the circle and in particular dense. In fact the svstem is
uniquely ergodic (show this!). Later in the context of entropy we will see how much

this transformation mixes the points on the circle.

Without the measure one cannot talk about ergodicity but something analogous
can be defined. A homeomorphism 7" on a compact metric space X is minimal if

all bi-infinite orbits are dense i.e. O(z) = X Vz € X. It can be easily shown that
(see [Wal)

Proposition 1.13.: Minimality of T is equivalent to the only closed and T-
invariant subsets of X being ) and X. Moreover if f is continuous on X and foT = f

then f is constant.

Ergodicity is near the bottom level in the hierarchy mixing/chaos. By this we mean
the ordering of dynamical systems according to how faithful their evolutions are to
the initial data. The higher the system is in the hierarchy the more it mixes up the
order in the initial state. Alternatively one can think of random or pseudorandom
components being more dominant in the behavior as one ascends in the hierarchy.
Purely random systems are at the very top.

In order to define the next level above ergodicity in this hierarchy it is useful

to recognize clearly the following fact.
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Proposition 1.14.: Suppose that (X, B, 4, T) is a dynamical system and A, B € B.
Then the system is ergodic iff

n—1

% Y u(TTANB)Y - u(A)p(B)  p-as. (1.3)

i=0
Proof: Applying Theorem 1.8. to x4 and multiplying the result by x5 gives

n—1

>oxa(T ) xn > uAxs  p-as.
i=0

1
n

which in turn yields (%) by the dominated convergence theorem.
For the reverse let A = B be an invariant set. Then (1.3) implies that

LY u(B) - (B,

i.e. necessarily pu(B) =0 or 1. |

The strengthening of ergodicity that we have in mind is (strong) mixing which is
defined by requiring that

p(T7ANB) - p(A)u(B) (1.4)

for all measurable subsets A and B and ¢ — cc. Clearly mixing implies ergodicity
by the result that we just established (1.3). The converse is not true — in fact the
irrational rotation is an example of a dynamical system which is ergodic but not
strong mixing (exercise).

In terms of probability concepts mixing is the same as asymptotic indepen-
dence. Independence would be simply u (T4 N B) = u(A)u(B) Vi # 0. In the
context of deterministic dynamics this notion would seem to be too strong to prevail
to anv reasonable extent but that isn’t actually the case. However it is usually hard
work to show the existence of such component in a dynamical system,

A natural extension of (1.4) would be the k-fold mixing

p (T A NT 2 A0 N T A1 N Ag) — p(Ar)p(Az) - - u(Ag)

for (41,12,...,%x—1) €scaping to infinity. Rokhlin conjectured that this should hold
for all k if it holds for £ = 2. This is one of the most important outstanding
problems in Ergodic Theory. Little is known how widely this is true. In the context
of Z% actions we will see an example where the conjecture fails.
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Inbetween ergodicity ( “rigidity”) and independence (“looseness™) there is a rich
hierarchy of mixing. One can characterise the degree in which the space gets shuffled
in a variety of ways. These include correlation decay rate, validity of the Central
Limit Theorem, triviality of the tail o-algebra etc. Some of these we will encounter
in subsequent sections.

Figure 1.1. Billiards: the coexistence of periodic and chaotic orbits (J[DG]).

References. A nice introduction to the basic questions in ergodic theory is Keane’s
article in [BKS). Further reading could be a general treatise on ergodic theory such as
[Pe] or [Wa]. The ergodic theorem presented here (it’s full proof can be found in [KW])
is just the beginning of a long story. A nearly upto date account of ergodic theorems is
Krengel’s book [Kr]. However the recent results on ergodic theorems along subsequences
of the integers are missing from there. In particular it is known that Theorem 1.9, also
holds along primes! This is a particularly hard result {due to Bourgain) since it does not
satisfy the natural condition that the subsequence along which the iterates are picked
has positive density among the integers (by the Prime Number Theorem primes have

zero density).
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1.2. Entropy
1.2.1. Measure theoretic entropy

Entropy is a fundamental notion related to the degree of disorder in a system. It is
defined in slightly different way e.g. in the context of statistical mechanics, graph
theory and information theory. Our treatment is closest to the last one.

Consider a probability space (X, B, ). A finite partition P of a space X is its
division to a collection of disjoint subsets {Fy, ..., P,} whose union is X (on aside
note that it is logical to denote a partition with a calligraphic letter as it generates
a finite o-algebra). In order to avoid pathologies we assume that the atoms P; are
measurable. If P/ = {P{,..., P/ .} is another partition of X we say that it refines
P if each element of P is a union of elements in P’ and write P < P’. The join of
the partitions

PVP ={PNPj|1<i<n, 1<j<m}

is again a partition (which refines both original partitions).
Given a probability space (X, B, 1) we define the entropy of a partition as

follows:
T

H(P)=—) u(P)lnpu(R). (1.4)
i=1
It is understood here that 0In0 = 0. We usually choose the base of the logarithm
to be e, sometimes 2 in which case it is indicated.

The functional form (1.4) is motivated by the requirements to find a function
on the partition that is (i) non-negative, (ii) non-zero if the partition is non-trivial
w.r.t. p, (iil) continuous and symmetric in the arguments, (iv) has a maximum at
the uniform distribution w.r.t. g. The derivation of the form (2.4) can be found in
many of the standard textbooks (check that (i)-(iv) are satisfied or derive the form
from the first principles).

Furthermore one can define the entropy of P with respect to P’ as

k17

H(P|P') = Z,u .)ZH(P?JP;) Inu (B5|PL) .
j=1
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Here p (Pi|Pj) = p (PN P}) /u(Pj) is the conditional probability for the events
P; and P; . Conditioning on sets of measure zero is avoided by removing these sets
from the partition P’.

The conditional entropy is important because of its intuitive content. Suppose
that we are told in which atom of P’ a point z of X is in. The conditional entropy
H(P|P’) tells us how much residual uncertainty there is if we would also like to
guess where z is in terms of P. If P = P’ upto sets of py-measure zero there is no
uncertainty and if P’ is the trivial o-field {0, X} the uncertainty is maximal i.e.
H(P).

The following statements are not hard. The formal proofs are left as exercises
and one should also find the intuitive reasons why the statements are true.

Proposition 1.15.: If P, P’ and P" are finite partitions then
(i) H(PV Py = H(P)+ H(P'|P).

(i) H(PVP') < H(P) + H(P').

(iii) P' = P" = H(P|P") < H(P|P').

If T is measure preserving transformation on X and P is a partition as above then
it is natural to denote by TP the partition {T"'Py,..., T P,}. Note that as
T preserves p H is T-invariant: H (T~1P) = H(P).

We use the notation Vf;ol P; to refer to the k-fold join of the k partitions
Pi, 0<i<k—1. A further shorthand used subsequently is P]* = anﬂ TP, All
the z € X with the property that z € P,,, Tz € B;,,..., T¢ Uz ¢ FP;, _, belong
to the same atom of the partition Pg'_l. The index sequence {ig,1,...,%k—1} that
specifies this (cylinder) set is the k-name of z.

Definition 1.16.: The entropy of the transformation T with respect to the
partition P is given by

MT,P) = lim kH (\/ T ’P)
The entropy of 1" is the number

h(T) = sup h{T, P)
P

where the supremum is taken over all finite partitions of X.

Remarks: 1. To distinguish the measure theoretic entropy from it’s topological
counterpart as well as to clarify with respect to which measure it is taken we will
use the notation A, (1"} when necessary.
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2. By our knowledge of H we know that both the entropies defined are non-negative
numbers and for the latter infinity is not excluded because of the supremum. We
will now proceed to argue the existence and finiteness of the former.

Proposition 1.17.: The limit limyo0 + H (V2 T-*P) exists for finite P.

Proof: Let ay = H (Vf;(} T“"P). By Proposition 1.15.
k+p—1
apip = H ( V T“P)
i=0
k—1 k+p—1
<H (\/ T—"‘P) + H ( V T‘*P)
i=k

=0

p—1

=ax+H (V T_""’P) =ag + ap
i=0

i.e. {ax} is a subadditive sequence. But the limit limg_, o ax/k exists for all such

sequences and equals to infg ax/k by the following Lemma. |

Lemma 1.18.: A sequence of real numbers {ay},° is subadditive if the inequality
ar+p < ax+ap holds for all indices k, p. For such sequence limg_, o0 ax/k = infy ay /&
and in particular if the sequence is bounded from below the limit is finite.

Proof: Given p > 0 any natural ¥ can be written as k = lp+ 1 with 0 < 7 < p.
First we note that

Ok G Gp % lap & ap
k—"ilp Ip~lp Ip Ip p

which implies that limsup & < 51;’1. So in particular lim sup 4 < inf %’“. But clearly

inf %” < liminf 2= and the inf is sandwiched to a point. |

From Proposition 1.15. one can quickly derive properties of the two entropies in-
troduced above. In particular a little algebra with partitions shows that

Proposition 1.19.: If P and P’ are finite partitions then
(i) (T, P) < H(P).

(ii) (T, PN P’) < h(T,P) + h(T,P’).

(iii) P < P' = (T, P) < h(T,P’').

(iv) For k > 0, h(T*) = kh(T).

The following result gives an alternative way of looking at the entropy with respect
to a partition.
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Theorem 1.20.: h(T,P) = limg_,00 H (P | PF) = H (P|P}°).

Proof: By Proposition 1.15. (iii) the limit is non-increasing and since it is bounded
from below it exists. We will show bv induction that

k—1
H(PE™) = H(P)+ ) H(P|P]). (1.5)
j=1

Clearly the formula is true for £ = 1. Suppose it is true for £ = p. Then

H(P§) = H(PVP})=H (P}) + H (P|P})
= H(P{™")+ H (PIPY)
p—1
= H(P)+ ) _H(P|P]) + H (P|PY)
j=1

p
Z (P|P)

where we have used Proposition 1.15. (i), T-invariance of x4 and the induction
assumption. So the formula holds for & = p+ 1 as well.
Dividing (1.5) by k vields

LH(PET) = LH(P) + 3 S H(PIP))

||Ma“

AN
k.

which implies the result since the Cesaro limit agrees with the usual limit whenever
the latter exists. |

Partitions can be good or bad (or ugly...). By this we mean that the partition
either splits the space in a reasonable way so that knowing in which atom a point
is gives some information on where it has been and where it will be going under the
iteration of the transformation. If it holds that

oo
\/ T7"P=8
i=—00
where B is the usual Borel o-algebra and the equivalence is upto sets of measure
zero then we say that P is a generating partition. Hence a generating partition
can distinguish the orbits upto a set of initial states of measure zero.
The key results concerning computation of entropy are the following theorems.

The first one is due to Kolmogorov and Sinali.
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Theorem 1,21.: If P is a finite generator then h(T) = h(T, P).
The existence of the generator required above was resolved by Krieger.
Theorem 1.22.: IfT is ergodic and of finite entropy then a finite generator exists.

The proofs of both theorems are non-trivial but can be found in the standard
treatises of ergodic theory. Actually finding a generator albeit finite may still be
tricky. However in the examples that we will consider the generation will be fairly

obvious.

To get at least one entropy nailed down we will take a final look at the rotation of
the circle.

Example 1.23.: Let us continue the Examples 1.3. and 1.12. If a/7 is rational
then all orbits are periodic of the same period i.e. TPz = x for some natural p and
all z. But then T? is identity hence its entropy is zero. Furthermore by Proposition
1.19. (iv) 0 = h(TP) = ph(T'). More generally a measure preserving transformation
on a finite space has zero entropy.

If oo/ is irrational the orbits are dense. Pick a partition P consisting of two
semiclosed half-circles. As the sets in the partitions in {T‘iP} have their endpoints
dense in the circle it is clear that P§° generates the Borel algebra. So we have a
one-sided generator (which surely is a generator), a strong property of a system!
So using theorems 1.20. and 1.21. we get (T} = A(T, P} = H (P|P5*) = H(P|B).
But the conditional entropy of any partition with respect to the full Borel algebra
must be zero. Hence the rotation on the circle is always of zero entropy. It is in
this sense that it is rigid and not chaotic at all.

The argument above on one-sided generators is useful to keep in mind in checking
the zero-entropy case in general.

Those familiar with information theory may already have noticed a connection
which is precisely formulated in a result by Shannon, MacMillan and Breiman.

Theorem 1.24.: Given a probability space (X, B, u), an ergodic transformation
T on it and a finite partition P let By(z) denote the atom in the partition PF—!
where z belongs to. Then

—‘—i— In g (Be(z)) — R(T,P)  u—as.

and in L'(p).
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Proof can be found in any standard text on ergodic or information theory. This is
a useful approach to entropy. Indeed one can use it as a defining property: entropy
with respect to a partition is the exponential rate at which the set of all £ with
the same k-name shrinks as k increases (given h is positive). For all but a zero
measure exceptional set of sequences this rate is equal. This result is also called the
asymptotic equipartition property.

1.2.2. Topological entropy

The concept of entropy can be introduced without any reference to the probabilities
of the events involved. We now briefly show how this topological version is set-up.

Suppose that X is a compact topological space and T is a homeomorphism. Instead
of measurable partitions we now deal with open covers. However the logic of the
construction is similar. For example if C and C’ are two covers we say that C’ refines
C (C = ('} if every set in C’ is contained in some set in € (i.e. ' is a subcover of
C). The join of the covers C vV C' is again defined as {CNC’'| C € C,C" € C'}.

Given a cover C by N(C) we denote the minimum of the cardinalities among
its subcovers and suggestively record H(C) = In N(C). As it certainly holds that
N({CVC') < N(C)N(C') we see that H({CVC') < H(C)+H(C’), a formula analogous
to Proposition 1.15. (ii). When k-fold join is understood in the obvious way an
argument parallel to the proof of Proposition 1.17. gives

Proposition 1.25.: A(7,C) = limg 00 %H (Vi:ol T—z’c)_

Definition 1.26.: The topological entropy of the transformation T is defined
as

Piop(T) = SIép h(T,C)

where C is any open cover of X.

Again C < ' implies that h(T,C) < h(T,C’) which is useful to know since if we can
find (and we will) a sequence of covers that eventually refines any cover the limit
along this sequence will catch the topological entropy.

The actual computation of topological entropy will be performed in the examples in
the upcoming sections. To wrap up things here we will point out the close relation
between the two entropies defined.
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Theorem 1.27.: Given a homeomorphism T on a compact metric space X the
topological entropy is the maximum of the measure theoretic entropy taken over all
T'-invariant probability measures Mr:

hiop(T) = sup A, (T).
peEMT
A statement of this type is called a variational principle. The supremum is
actually achieved and an element of My which gives it is a measure of maximal
entropy. As one might suspect they are of physical significance. We do not prove
this result but in the context of Gibbs measures at the end of next section a stronger
result will be established.

References. The basic introductory material is covered for example in [Pe] and {Wa].
Further elaboration can be found in [CFS|. A cute introduction to entropy is presented
in [Bi]. Entropy was introduced to mathematics by Kolmogorov in his studies on the
sizes of function spaces. In the fifties and sixties he an Sinai formulated the most natural
definitions in the dynamics context. Part of the reason why the entropy has attained such
central position in ergodic theory is due to the path breaking result by Ornstein showing
that entropy is a complete isomorphism invariant for Bernoulli shifts. The subsequently
polished Bernoulli theory is at the core of all of ergodic and probability theory and plays
a key role in the context of systems with positive measure theoretic entropy as they have

automatically Bernoulli factors. More on Bernoulli shifts in the next section.
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2.1. Symbolic dynamics

We now proceed to present the basic framework of one-dimensional symbolic dy-
namics.

The fundamental object of study is a sequence space. One might want to think
it as a “skeleton” of a richer dynamical set-up, say a flow on a manifold, when one
only records in which atom of a partition the orbit is at the times of measurements.

Definition 2.1.: Let the set S = {1,...,n} be a finite set of symbols forming
an alphabet. If we assign one of the symbols at each site of the one-dimensional
integer lattice Z we obtain the set X = 8% of configurations.

Equipped with the product topology the set X becomes a topological space. Of
the many equivalent ways of metrizing this topology the following is perhaps most
useful to keep in mind

d(z,z)=10, d{z,y) =2~ min{i|| @iy}

Here z; refers to the i** coordinate of the sequence z € X.

The set of configurations is a compact metric space for all n {exercise). Indeed
it is homeomorphic to the closed unit interval hence it must be uncountable.

The basic dynamical operation on the configurations is the shift in the “time”
direction.

Definition 2.2.: The left (coordinate) shift on a configuration z € X is defined
as (ox); = x4y Vi. The topological dynamical system (X, B, o) is called the full
n-shift. If we call the product measure m obtained by assigning the symbol s the
probability ps (so p; > 0 and ) p, = 1) then the dynamical system (X,B,m, o) is
the Bernoulli-shift B(py,...,p,).

The coordinate shift is often called a shift-action since it is thought that the group Z
is acting as a translation on the configurations. The shift is a homeomorphism of the
space X (exercise). Hence we have a continuous action on a space (with a somewhat
unusual topology) and the definition just formulates their natural combination.

Example 2.3.: Given the full shift on n symbols we can easily compute the topolog-
ical entropy. The topological entropy is again given by the entropy with respect to
a generating cover. Such a cover is now readily available. Define C = {Cy,...,C,}
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where C,s = {{z:}*,| 2o = s} (check that this cover which is also a partition is a
generator). Then

huop = h(0,C) = lim Inn (1) = Jim % Inn* =Inn.
An argument this formal is of course overkill — here it just serves to unwrap the
definitions and results given. The idea of topological entropy is that it counts the
exponential rate at which the number of orbits of length k£ grows as k increases.
As the the full shift on n symbols has exactly n* orbits of length % the topological
entropy must be the given number.
The measure-theoretic entropy of the Bernoulli shift B(p,...,pn),

hae = — f:pz- In p;
=1

follows directly from Definition 1.14. and Theorem 1.19. (exercise). This set-up is
actually so simple that we can immediately verify the variational principle.

Proposition 2.4.: The full shift on n symbols has a unique measure of maximal
entropy, the uniform product measure,

Proof: Let P be the natural generator above for the entropy. If i is any measure
of maximal entropy then using the standard notation where ’P(’,“ ~! stands for the
k-fold join of the partitions we have

1

H, (PE") < L lan* = lan,

Inn<h, < p

Here we have used the facts that H, (Pg_l) /k decreases to the entropy and that
the entropy function H is maximized at a unique point, the uniform distribution
(check). So H, (P(’)“_l) = klnn. At the maximum of H each atom in PF~! has
measure n~*. The argument is independent on & hence the measure x must be the
product measure. |

The full shift is rather simple object. However things become a great deal more
interesting if we consider non-trivial closed and shift-invariant subsets of X instead
and the shift-action on them. Indeed things get so interesting that as of now only
dimension one can be comprehensively dealt with.

Suppose that we are given a n X n matrix A with each entry a;; being either
one or zero. Its powers are of course matrices with non-negative integer entries.
When such matrix power is considered it is convenient to refer to its elements by
[A™ 3.
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Definition 2.5.: Given the set X4 = {:c € X| gz, =1Vi € Z} the system
(X 4, B, 0) is called a subshift of finite type (SOFT) or a topological Markov
chain.

If the matrix A is such that for each i, j there exists n > 0 such that [A"];; > 0 we
call the SOFT irreducible. If there is a universal n such that [A™];; > 0 Vi, j we
call the SOFT irreducible and aperiodic or simply primitive.

Equipped with the inherited topology the set X 4 is a compact metric space invariant
under the shift-action. The full shift corresponds to all entries of A being one. If
all entries of A are zero the space is of course empty but it can be empty for a
non-trivial A as well, for example in the case of the matrix on the left (for all the
matrices the alphabet is {0, 1}). The two matrices in the center (b,c) illustrate the
non-uniqueness of A: they define the same SOFT.

01 1 0 1 0 11
¢ 0 1 0 0 0 10
Figure 2.1a, b, ¢, d.

The rightmost entry in the Figure 2.1. is an example of an irreducible and aperiodic
matrix/subshift. Without irreducibility the statespace of the topological Markov
chain could split into components which do not communicate, a redundant case
which we do not wish to deal with. Aperiodicity rules out the situation where
a state can only be visited at certain (say odd) times. For elaboration of these
conditions see any text on Markov chains e.g. [KT]. Irreducibility and aperiodicity
are subsequently running assumptions.

It is also useful to notice that dependency between the symbols in the sequence
over longer but finite ranges can always be reduced to our set-up. If there is a
dependency at distance L but no further (here we have L = 2) one just defines
a larger alphabet from blocks of length L — 1. The dependency within this new
alphabet can be described in terms of an adjacency matrix A.

With this preparation we are ready to compute the topological entropy of a general
SOFT.

Theorem 2.6.: Given a SOFT with an irreducible matrix A its topological entropy

18
htop =InA (21)

where X is the largest positive eigenvalue of A.
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Proof: Suppose that A is a n x n matrix. The generator of the full n-shift C =
{Ci}T, Ci = {{z;}*=,| zo =i} generates for the shift on X4 as well. Therefore
N, = N (Cf)“_l) gives the number of different orbits of length & under the shift.
Consider the set all sequences which have a prescribed k-block starting at origin:

Xigyoinor = 1125} 5 € Xa| o =10, ., Th-1 =ip_1}-

It is non-empty iff @444, G4y4, - -+ iy 4, = 1. So the number of k-tuples for which
Xig,...ix_, 1S nON-empty is

n n
le— k—
Np = Z Qipiy Qirip """ Qige_gip 1 = Z [A 1] ioin_1 |A 1”
iy emafr—1=1 t0,i5—1=1

where the sums are k-fold and we have defined the matrix norm by setting || B} =
D ; |bij|- But then by the Spectral Radius Formula ([Rud])

1 _ k—1)1/k
—In N = In (||A I ) —>InA

The existence of the maximal non-negative (and simple) eigenvalue A is due to the
Perron-Frobenius Theorem for non-negative irreducible matrices (see Appendix 1),

Remarks: 1. The crux of the proof, the identification of the matrix power, un-
veils the germ of transfer matrices. These were successfully used by E. Ising in
the twenties in solving a slightly different problem and since then by many others
especiallv in statistical mechanics. For a review of these in the dynamical systems
context see [Bal]. We will discuss them again in the context of Gibbs measures.

2. A periodic point for the shift is a configuration satisfying ¢?x = z for some
p > 0. They have a number of interesting properties and although one might think
that they are quite special and rare this is not really the case. In particular if NP
denotes the number of periodic orbits of period p then it can be shown under the
assumptions of the Theorem that

lim llnNgf'e”r =InA.
p—oo p

So there is exponentially as many periodic points as there are configurations! This
property and the subsequent extension of the Theorem is left as an exercise. The
result is not limited to just the shift space context. Moreover the periodic points
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are good representatives of the entire space X4 in the sense that they are nicely
distributed. This can be formulated as follows: consider the empirical measures

_Ll§ 5
#m-m J_VF Z =

p=>0 {z|ePz=x}

where 4, is a unit mass concentrated at the configuration z. Turns out that these
probability measures u,, converge to a limit that we have already encountered, the

measure of maximal entropy!

Example 2.7.: Example 0.1. continued. The subshift in this example is defined
by the matrix in Figure 2d. As its eigenvalues are (1 & +/5)/2 by the Theorem
hiop = In (1%} € (0,1n2) and the system is occasionally called the one-dimensional

golden mean.

We now briefly discuss certain invariant measures that a SOFT can have. To do
this we first reformulate an ubiquitous probabilistic dynamical system.

Example 2.8.: First note that the Bernoulli shift corresponds to an independent
process as one can interpret its dynamics as rolling a die with facet probabilities
p;. To generalize a bit suppose that we have a transition matrix P ie. an xn
matrix the entries of which p;; represent transitions (conditional probabilities of
transitions) from state ¢ to j. Because of this structure the row sums must be one
and each element as a probability is non-negative. Assume furthermore that this
matrix is irreducible and aperiodic. P and its transpose always have 1 as a maximal
eigenvalue. Hence it fixes a vector p from the right: pP = p. That p is a positive
probability vector (p; > 0, >_p; = 1) is a consequence of the Perron-Frobenius
Theory and normalization. To get a measure on the sequences of X = {1,...,n}%
we define on a cylinder set of length &

pp({z | z; =140, Tjtk—1 = th—1}) = PioPicis ' * * Pis_gin_1 Vi.

The measure on finite cylinder sets extends the usual way to all of the Borel algebra,
of X. Moreover the measure is clearly shift-invariant. The resulting dynamical
system (X, B, up, o) is called the (two-sided} (p, P)-Markov shift. Note that if we
choose p;; = p; the Bernoulli case is recovered.

The measure entropy of this system is derived analogously to the Bernoulli case.
We leave it as an exercise to the reader to verify the expression Zt ; Pilij In p;;.
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Turns out that there is a natural Markov shift associated to a SOFT. Given an
irreducible matrix A by the Perron-Frobenius Theorem we can find strictly positive
left and right eigenvectors u and v corresponding to the maximal eigenvalue A:
uA = du and Av = Av. Normalizing these by setting  u;v; = 1 we then define the
(p, P)-Markov shift by setting

aijvj

Pi = U, Pij = A0:
2

The left-invariance of p is immediate. By extending this to a measure on cylinder
sets we obtain an invariant measure p* for the subshift (X4,0). Conversely one
might think a SOFT as the skeleton of a Markov shift, it topologized version.
The star in the invariant measure refers to the fact that this measure, sometimes
called the Parry measure, is a measure of maximal entropy:
AV . GiVj
by = uyv; ——2 In —22
# ; P Ay A,
u .a . -U .
= - Z% (lna,,-j —l—lnvj —InA— 1111’1;) = In A.
i,

Indeed it is the measure of maximal entropy — proving the uniqueness requires
further work and can be found in standard references. The uniqueness, which fails
in higher dimensional subshifts is related to the non-existence of phase transitions
in one dimensional systems with finite range interaction. We will return to this
in the next section where we show the existence of invariant measures in greater
generality.

One might however point right away an immediate of generalization. Introduc-
ing weight a matrix W, wy; > 0 we can define [Ay]i; = ajjwy;, Vi,J. Ay clearly
inherits irreducibility, aperiodicity etc. from A. Hence imitating the construction
above we can using Perron-Frobenius theory derive a Markov measure pp, . W =1
obviously recovers the Parry measure. Indeed it is not hard to show that any
(p, P)-Markov shift can be constructed via weights from a suitable A.

Utilizing the Perron-Frobenius Theory and the formulations above one can immedi-
ately derive further results. Given an irreducible and aperiodic SOFT (X4, B, o, i)
and 1; € L%(u), two complex-valued functions on X4 one can for example define
the one-point correlation function as

Copy pp (1) = X 1 (o™z) T/’Z(ﬁ)dﬂ—/); Prdi . Wodps .
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The left shift is invertible so the expected symmetry Cy, v, (n} = Cy, v, (—n) indeed
holds. If ¢; = xa,, A; € B then

Cyaapa(n) = 1 (07" A1 N Ag) — (A1) 1 (A2)

which then asymptotically vanishes if p is mixing. For is the case if the SOFT
is irreducible and aperiodic and for this there is a simple spectral criterium (see
Exercises).

If ¥ is locally constant i.e. ¥(z) = %(zp) then one can using the Perron-
Frobenius theory show the exponential vanishing of one-point correlations (for a

proof see e.g. [Bal|):

Theorem 2.9.: Consider a (p, P)-Markov shift (Xa,B,0,pp) which is mixing.
Given the spectrum o(A) let a = supy, {|A:| | A € o(A)Y\ {1}} . Then for any
b > a ther is positive K such that for all locally constant 1;

|C’A"1ﬂ!’2 (n)| < Ksup le] sup |¢2|bn .

The existence of a spectral gap in the transfer operator, exponentially vanishing
correlations and asymptotic indepencence are phenomena that prevail in many dy-

namical systems.

SOFTs have certain key ingredients in their structure which makes their mathemat-
ical analysis feasible. But of course one might think of other ways of restricting the
allowed sequences. A useful point of view to this is provided by a graph formu-
lation. Suppose that we are given a finite directed graph with self loops allowed.
Let us assign each node a unique symbol from an alphabet § requiring that each
symbol appears only once in the graph. Transversing the graph along the arrows
gives us a bi-infinite sequence of symbols.

Any SOFT clearly can be represented by such graph: the absence of an arrow
from node ¢ to node j corresponds to the exclusion i.e. the situation a;; = 0.
Starting from a complete graph with n nodes (n x n matrix s.t. A =1) we can by
this removal procedure construct any adjacency matrix A hence any SOFT. Figure
below, left, illustrates this in the case of Golden mean shift of Example 0.1. (the

adjacency matrix of which was illustrated in Figure 2.1. d).

27



W D D

Figure 2.2. Graphs for shifts. a, b: Golden mean, c¢: Even.

Suppose that instead of labelling the nodes we label the arrows and moreover allow
a symbol to appear multiple times in the graph. As an example of such graph see
Figure 2.2. b. This is an other, non-unique, way of of representing the Golden mean
subshift.

On the right there is another case where there are two nodes and the arrows
connecting them are labelled by 0 and one of the nodes has a self-loop labelled by 1.
Transversing this graph gives the set of subsequences of {0,1}% with the property
that between any two consecutive 1’s there is an even number of (’s. This is called
the Even shift. As the length of the one-block does not have a bound this is not a
local description and indeed this is not a SOFT (to convince of this try finding a
graph description of the first type!).

The sequence space of the second type equipped with the left shift is called a
sofic shift (“sofic” was coined by Benjamin Weiss from the Hebrew word for finite).
They contain the SOFTs as a subset. Some of the SOFT theory carries over to
them. For example the topological entropy can still be computed via a matrix
formulation and is also given by the growth rate of number of periodc orbits. The
reader might want to try proving that the even shift in fact has exactly the same
entropy as the golden mean (can be done from first principles alone).

There is a hierarchy of sorts of subshifts. In some ways it resembles the Chom-
sky hierarchy of languages. Sofic shifts are actually equivalent to regular languages
and context free subshifts correspond to context free languages. As an example
of non-sofic context free shift consider {0,1,2}% with restriction that 01270 may
only occur if ¢ = j. It is easy to see that in a graph corresponding to a sofic shift
there is no mechanism to compare the lengths of two separate loops needed here.
Hence the example is beyond the power of such description.

Another class in the hierarchy is renewal systems where the legal sequences
are infinite concatenations from a finite dictionary of finite words. These again

contains elements beyond those generated by sofic shifts.
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References. Some basic introductory material is covered in Keane’s article in [BKS]
and more in [Pe] and [Wa]. SOFTs were introduced by Parry. Their popularity was
greatly boosted by Smale in showing their usefulness in the context of a key class of
smooth dynamics, the Axiom A flows. For an in depth review of transfer operators in
dynamics see [Bal]. A wealth of results on Markov shifts can of course be directly trans-
lated from probability literature on Markov chains. An up to date treatise of 1-d symbolic
dynamics including graph formulations, zeta-functions, digital coding applications etc.

is [LM].
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2.2. Thermodynamic formalism

The title is somewhat grandiose for what is coming. But there is a theory with
this name and we present the basics of it. As one readily guesses this must be
coming from physics, where even theory of everything is around the corner... But
to give proper credit this important aspect of the subshift theory was initiated by
mathematical physicists Dobrushin, Lanford, Ruelle and Sinai and later put into
definitive form by (the mathematician) Bowen. We follow closely to the notes of
the last one ([Bo]).

The physical intuition is as follows. Suppose that we have a mechanical system
with some dynamics which is brought into contact with an other system of much
larger size. Assume that the larger system is in thermal equilibrium (constant
temperature) and the smaller will eventually reach an equilibrium with the bigger
one i.e. it will be at the same temperature. The equilibrium distribution is given
to a large variety of systems in statistical mechanics by a Gibbs distribution. The
characteristic property of this distribution is that it minimizes the free energy

E - KTS.

E is typically potential or kinetic energy of the components of the system and &' is
the entropy usually in the form of thermal vibration. T is the absolute temperature
and k is a constant. Loosely speaking free energy is the energy that could in principle
be retrieved from the system. The fundamental law of thermodynamics tells that
at equilibrium this quantity is minimized. Equivalently S — E/(kT), the disorder,
is maximized.

As we already have a measure of entropy the idea is to identify the interaction
in the subshift context to provide the analog of energy and then reason what the
equilibrium distribution/measure should be.

Suppose that we are given an irreducible and aperiodic SOFT on an alphabet of
n symbols. We assume that on top of the “hard interactions” that the exclusions
(in the form of the zeros in the adjacency matrix A) represent there is a “soft
interaction” in the form of a potential. In its general form this is described with
a function ¢ : X4 — R. More specifically we can think %) to contain contributions
from self-interactions of a symbol (representing how much energy is involved in its
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presence) and pair-interactions of two symbols a given distance apart (representing
spin-alignment -type interaction). So for the contribution at the origin we can write

¥ (2) = ¢ (zo) + ) ¥ (j; 20, z5) (2.2)
340
where 1), and 1, are the self- and pair-interaction potentials. Of course the summa-
tion should converge i.e. the distant contributions to be negligible. Also from purely
physical point of view we should expect that the potential should decay in some
reasonable fashion unless we model a situation where very complex interdependency
between a large number of coordinates is expected.
Let us define on C (X 4) a distance function as follows

11k = sup {|[4(z)} = ()| | z: = v: Vi € {=k,..., k}}.

As X 4 is compact elements of C (X 4} are actually uniformly continuous therefore

1]k — 0.
We will restrict to the potentials in the class

Ha={v€C(Xa)| 1%]|x = aB* Vk for some 0 < ,0 < B < 1}

i.e. functions with exponential tails. Turns out that these are the Hélder continuous
functions on X 4 (check).

The existence of an important type of equilibrium measures is established in
the following key result (which is proved in e.g. [Bo]). Let S,,¥(z) denote the
summation Y pg ¥ (o) .

Theorem 2.10.: Given an irreducible and aperiodic SOFT and a Hélder potential
1 there is a unique o-invariant probability measure p on X 4, the Gibbs measure,
satisfying for some constants 0 < ¢ < C < o0

p({y € Xal vi=z: Vi€ {0,...,m—1}})
cs e—Pm+Smip(x) < C

forallx € X4 and all m > 1.

Remarks: 1. The proof of this result hinges on a highly non-trivial generalization
of the the Perron-Frobenius theory to non-negative operators by Ruelle. We will
not present it but refer to the standard sources i.e. work of Lanford, Ruelle and
Bowen (see references in [Bo]).

2. The summation in the exponent is of course an consequence of the assumption
that the potential contribution (2.2) is shift-invariant.
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3. The number P appearing in the Theorem is called the pressure. Upto sign and
scaling by temperature it turns out to be the same as free energy density. Note
that it must be unique and finite as p is to be a probability measure. P and p of
course depend on the potential ¢. However two different potentials may yield the
same Gibbs measure (see exercises) and pressure.

4. Note the special case ¥y = 0 is just a plain SOFT. The Theorem implies that every
m-cylinder {y € X4| v; = %; Vi € {0,...,m — 1}} has upto a constant multiple the
size e~ F(O™_ Ag these cylinders generate the Borel algebra in view of the Shannon-
McMillan-Breiman Theorem we must have P(0) = h, (o) if the Gibbs measure is
ergodic. It turns out Gibbs measures are measures of maximal entropy so actually
P(0) = hyop. Moreover as a fall-out of their construction the mixing property is
immediate (and we know that mixing implies ergodicity).

This observation is actually not as limited as one might think as it is quickly
extended. Consider the exponent in the denominator when —m has been pulled
out. It is P(y) — (1/m) g~ 4 (07z) . If 1 were ergodic we would by the Ergodic
Theorem know that this expression gives in the limit P(¢)) ~ [ tdp which by again
quoting the SMB Theorem equates to h,. Turns out that this equality is actually
true and our next task is to really show it!

To show the special status the Gibbs measures enjoy among o-invariant probability
measures we proceed to establish a variational principle. A couple of preliminary
result are first in order. Aside from being technically useful the first one also
indicates the naturalness of the Gibbs distribution.

Lemma 2.11.: Given {E;}] the problem
n k1)
MAX — qu; Inp; -+ Zp?;E.i
1 1
n
st pi20, ) pi=1
1

has a unique solution

el

p’n‘."‘ TeEj'

The proof is calculus (check). In terms of our earlier thermodynamic description
the numbers E; are the different energy levels available hence the second summation
can be viewed as the total mechanical energy of a system.
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Given the natural generating partition P and its m-fold refinement PJ* ~1, recall that

an atom in the latter, Xo = {z € X4| 20 = @0,--.,Tm-1 = @m—1}, is determined
by its m-name a = (ag, ..., am_1). Using this shorthand define
m—1
sup S (¥) = sup »_ ¥ (o*z)
i reEXa k—0
and

Z'm ('ﬁb) = z ¢“'Pa Sm ("‘b)

Those familiar with statistical mechanics will recognize the last expression: it is a
partition function. It is informationwise an extremely densely packed quantity. In
particular it provides an alternate definition of the pressure. This is shown in the
following result which also proves the earlier claim that this quantity is the free

energy density.

Lemma 2.12.: The expression P(y) = limy, 0o(1/m)1n Z,, () exists for all con-
tinuous potentials. If the potential is in Ha, A irreducible and aperiodic, then P(3)
equals to the pressure in the definition of the Gibbs measure.

Proof: The existence of the limit is a simple application of subadditivity of In Z,, (1)

and Lemma 1.18.
For the second part recall that if u, is a Gibbs measure then

fy (Xa)
Pt © (&0

Summing over all allowed vectors a and taking into account that p; is a probability

measure gives ce ™ Z,,(¢) <1 < Ce P™Z,, () or equivalently

Zm (1) c {1 1],

er .

C'c

Taking logs and the limit shows the equivalence of the two definitions. |

Proposition 2.13.: For a continuous potential v and a o-invariant probability

measure |4 we have

[ < P (2.3

Proof: Since u is o-invariant we have for any m > 1

1
5]&mw=[ww
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h, + / Wy = "%ixpm% (H (Pr1) + f Sm’l,bdp,)

where P is the natural generating partition. Using our new notation and recalling
the definition of entropy with respect to a partition we can bound the expression
inside the parenthesis from above by

Za: #(Xa) (— In 4(Xa) + sup Smd') -

But by the Lemma 2.11. the maximum of this expression is attained at the Gibbs
distribution. Substituting Ea = sup, S, into the expression for maximum indi-
cated in the Lemma 2.11. we get

In) " e™Pefm¥ =1n Z,, ()
a

which after the limit gives the result. |

The measures for which we attain the equality in (2.3) are called equilibrium
states or equilibrium measures. After this groundwork we are ready to identify
them.

Theorem 2.14.: Given a potential ¢ € H 4 and an irreducible and aperiodic SOFT
the Gibbs measure (i satisfies

By + f bduy = P(¥) .

Proof: Given z,y € X, note that

1St (y) — |<Z|¢ay ¥ (o*z)
< ello+ N1l 4+« - + ¥ llimsa + 10l m—jmyz + -+ [[¥]lo
[n/2] I %
< 2 ;} frsi—5=d.

So for any z € X,

(X I (X f Smtbip

> —p (X )(lnﬂ (Xa) — Sm¥p(z) + )
> —p(Xa) (In (Ce—Pm+Sm1.b(m)) Spth(z) + d)
> 4 (Xa) (Pm —InC — d)
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and therefore

—I—/Smd)du
—Z( ) In g (X, )+fxasm¢du)

> u(Xa)(Pm—InC—d)=Pm-InC-d.

The result follows from

1
b+ [ vdu= lim ( Y+ [ Smwdu)

> lim l(Pm InC —d) =P(¥)

m-—o0 111

as the reverse inequality was established in Proposition 2.13. |

Remark: With some further work this could be sharpened. Turns out that the
Gibbs measure is actually the unique translation invariant probability measure on
X 4 which is an equilibrium measure i.e. gives the equality in the variational prin-
ciple. The proof can be found in [Bo].

The class I 4 is just a gentlemen’s agreement on what is a nice class of potentials
to deal with. Note that all potentials with finite range are of course in this class.
The uniqueness of the Gibbs measure can hold for potentials with tails decaying
at a sub-exponential rate. The exact characterization of the potentials yielding
uniqueness is an open problem.

However the more interesting question is really the complementarv one i.e. for
which potentials the uniqueness fails and how seriously. By this we mean questions
like how many extreme points the set of equilibrium measures has and how do the
correlations between the coordinates behave in generic sequences (power law versus
exponential etc.).

The existence of multiple equilibria corresponds physically to phase transitions
the different phases being the different equilibria. In one dimension the rule is
that fast decaying potentials do not allow non-uniqueness but this is not true for
two and higher dimensions. One of the first indications of this dichotomy was
found in the context of the Ising model. It holds to great generality as we will
see already in the context of one-dimensional cellular automata which are a step
towards two-dimensional models. Part of the fascination of these models is that
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non-uniqueness of the equilibria is deceptively simple to generate but usually quite
difficult to analyze.

References. Some basic introductory material is covered in Keane's article in [BKS]
and more in [Pe] and [Wa]. For the more ambitious reader the standard pointer is [Bo].
This reference develops the theory towards application to a class of hyperbolic dynamical
systems called Axiom A. Together with one-dimensional maps of the interval they are
perhaps the best understood of all {chaotic) smooth dynamical systems. The definitive
(and extremely dense) account on the thermodynamic formalism is [Rue]. The classic
treatise on related statistical mechanics models is [Ba]. The first application of the

thermodynamic thinking to smeooth dynamics can be found in the papers by Sinai.
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3. Cellular automata

3.1. Basics

We will now proceed to investigate a class of deterministic dynamical systems that
introduce us to higher dimensional symbolic dynamics. They are defined on one
dimensional subshifts of finite type of the previous section but their space-time
evolutions illustrate many of the phenomena encountered in the general two and
higher dimensional set-up.

Consider the space of configurations X = SZ where S$ = {0,1,...,n — 1} is
the the set of symbols. As before ¢ will be the left shift on the configurations.
From mathematical point of view it is quite natural to start asking questions on
properties of mappings of the configuration space i.e. F': X — X. As X has the
product topology described in Section 3.1. it is in particular meaningful to ask what
kind of characterizations there are for F’s that are continuous?

One might also view this question concerning maps I as coding problems: a
code translates a sequence of symbols to another sequence. If the symbols used in
both the source and the target languages are the same then this coding corresponds
to some map F.

Yet another way of looking at this set-up is the physical one: suppose that the
symbols lying on the integers represent the output of some physical process. If the
neighboring site values interact according to a physical law then the symbol values
should be up-dated according to a discrete version of this law. As a first assumption
it might be useful to declare that the physical laws are everywhere the same i.e. the
local update rule should be the same no matter where it is applied to the symbol
sequence.

Motivated by these considerations let us now define the basic object of study.

Definition 3.1.: Given integersr_, 74 > 0 let f : S™-1"+*1 — § be a block map
on r_. +r4 + 1 consecutive symbols. Applied to a configuration ¢ € X at site § the
block map is a cellular automaton rule assigning to the site x; the new value
f (:cjm,n_ AP 7 I ,:r;j+r+) . Applying the rule to each contiguous r_+r4 +1-block
in a configuration defines a global map F' called a cellular automaton (CA).
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As every asymmetric block map i.e. r_ # r4 can be extended to a symmetric one
we will assume this from this on (exercise). So let 7 = r_ = ry and call it the
radius of the rule. One should think of the block map updating the cell/site value
at the center of the block of length 2r + 1 if 7 is an integer. If r is a half-integer
then the midpoint is not a lattice point and one should think of the update being
of the cell next to the left (say) or on the dual lattice (Z 4+ 1/2) on odd times. The
radius is the range at which the site exerts its influence in one time unit (iterate).

A block map like the one in the Definition is in the coding theory community
called a (finite) sliding block code.

Note that by definition the global map F' commutes with the shift: Flog = goF.
So it is a translation invariant action on the bi-infinite symbol sequences. Does it
have other nice properties? The following answer which is due to Curtis, Lyndon
and Hedlund can and also should be viewed as an alternative, equivalent definition
of a CA.

Recall from Section 2.1. that the metric of our choice on X is d(x,z) = 0,
d(m’ y) — 27 min{|'n|| mi#yi}_

Theorem 3.2.: A global CA map F is continuous and every continuous and shift-

invariant map on X is given by a block map.

Proof: The first part of the theorem is easy. Suppose that the rule is of radius r.
Given € > 0 pick n > 0 such that 27" < e. Two sequences z and y which are at
most distance 27"~ apart agree on the interval {—n —r,...,n+r} so F(z) and
F(y) surely agree on the interval {—n,...,n}.

For the converse let C; = {z € X| zp = i} be the usual partition of X to com-
pact sets. Given a continuous map F : X — X by the following Lemma F~1 (C;) are
disjoint and compact and there is 6 > 0 such that if x € F~1 (C;}and y € F~1 (Cy)
for distinct indices then z and y are at least & apart. So choosing n such that
2" < § guarantees that any two sequences z and y agreeing on {-n,...,n} are
actually in the same set F~1(C;) . Consequently F(z)o =i = F(y)o i.e. the zeroth
coordinate depends only on a 2n + 1-block. This together with the fact that F' is

shift-invariant implies that it is given by a block map. |

Lemma 3.3.: If M is a compact set, g : M — N is a continuous map between
metric spaces and I is compact in N then g~ '(FE) is compact in M.

If E and F are compact and disjoint subsets of a metric space (M, d) then there
exists § > 0 such that d(z,y) > 4 forx € F and y € F.
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The proof is left as an exercise.

Theorem 3.2. identifies the CA exactly as the set of continuous maps of the sequence
space to itself which are translation invariant. The last requirement is clearly nec-
essary — without it the (block) map could be different from point to point.

As the result indicates a nice closure property let us denote by E{(X) the set of
all continuous maps on the sequence space X which commute with the shift. The
notation refers to the fact that this is the semigroup of endomorphisms of the full
shift (X, B, o).

Inside E(X) we can distinguish finer classes. The set of surjective CA are the
ones for which F'~1(z) is non-empty for all € X. Turns out that the set of injective
CA A(X) are contained in the set of surjective ones. Therefore each of these CA is
invertible and their set is called the automorphisms of the shift. A(X) is group and
indeed it is not too difficult to show that every finite group is isomorphic to one
of its subgroups ([He]). Although this set still seems to be large, for the purposes
of finding interesting dynamics it is a bit limited. Subsequently we will sometimes
have invertibility but do not impose it.

Let us however remark that invertible or reversible CA are sometimes impor-
tant for physical reasons. If the CA models a process at a level where information
is preserved then the CA should have this property, too. Also, deleting information
has an energy cost/equivalence, which at high densities might affeect the actual
circuit implementation of a CA.

On a more theoretical level it is known that finding the inverse of a reversible
CA is a decidable problem in 1-d, but not in higher dimensions. There are also
tight bounds for the radius of the inverse block map in 1-d (see e.g. [Kar]). For
some CA the inverse is immediately available as we will later see in Example 4.8.

Note that the set of surjective CA excludes any CA which has a nontrivial
attractor. Such attractor is a strict subset of the space towards which the orbits
tend asymptotically. So the asymptotic action in a system which has an attractor
is confined to a subset of the space X. Indeed one can prove that if a CA is not
surjective then asymptotically its action is restricted to a set (attractor) of Bernoulli
measure zero. The sense in which we should expect the convergence to take place
is different from that in the context of e.g. differential equations. We will return to
this in detail in the subsequent sections.

3.2. Phenomenology

After the formal prelude let us take a step back and look at a few CA with the
purpose of trying to see the spectrum of qualitative behavior possible. It should
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be emphasized that we are not proposing a classification scheme — there is no such
thing for CA in the rigorous sense as of now. The purpose here is to provide some
insight and screen for CA that the concepts developed so far might be applicable.

Example 3.4.: Figure 3.1. shows a few evolutions on a toral universe of perimeter
100 cells i.e. the left end wraps around to the right one. The time runs down-
wards, in these samples for 100 iterates. The initial state in each run a disordered
configuration where zeros and ones follow independently and with equal probability.

The rules shown here are the so called elementary cellular automata {(ECA)
which means that the alphabet is {0, 1} (corresponding to white and black) and the
radius is 1. There are 22° = 256 such rules (as a rule rule is uniquely defined after
telling to which symbol any of the eight possible binary triples maps). These CA
go by the rule number defined as follows. Consider the set of binary triples that
map to one under the rule. Each of these triples is the binary representation of an
integer between 0 and 7. Let these integers be {a;}. The rule number is then simply
3~ 2% (convince yourself that two different rules cannot have the same number).

The top left evolution in Figure 3.1. is that of ECA Rule 40. 40 = 25423 and as
510 = 1015 and 319 = 0115 the rule is in terms of the rule table: {{101, 011} — 1}
whereas the other binary triples map to zero. The rule shows quite boring transient
behavior: it is easy show that the evolution for this rule from a generic disordered
state dies off quickly. Fading into the homogeneous state (here all zeros but could
be else) is perhaps the simplest class of CA behavior. But note that already in here
there is an exception: from the initial state 01 (periodic extension of the block 01)
results an evolution of temporal period 2, a checkerboard pattern. Are there other
configurations that do not die off?

Top right CA should look familiar as it is the CA implementation of the left-
shift. A second of thought reveals that for a CA to be the left-shift we must have
001,011,101 and 111 — 1 while the other triples map to zero. Summing these
up tells us that the rule is 170. Similarly there is among the elementary CA a
right-shift, an identity and a zero-map as well as some other pretty trivial rules.

The ECA Rule 73 is illustrated on the bottom left in Figure 3.1, The rule is
a canonical representative of a another class of CA namely those whose evolution
results in a temporally periodic pattern. Note in the context of CA one has to
distinguish between the spatial and temporal periodicity. A configuration z € X is
spatially periodic if o2 = x for some positive p and temporally periodic if F9z = x
for some positive g. The picture indicates that several different spatial and temporal
periods are allowed by Rule 73.
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Figure 3.1. Evolutions under ECA Rules 40, 170, 73 and 184.

The last rule in Figure 3.1. is number 184 ({{011, 100,101,111} — 1}). The notable
feature here is the appearance of particle-like structures. They move either to the
left or right with maximal velocity £1 cell per iterate. Particles with the same color
cannot meet and for the black and white collisions there is a simple rule: the bigger,
that is wider, particle wins. It is left as an exercise to the reader to find out the
exact mechanics of this collision rule. Aside the ballistic annihilation above, other
interpretations are also possible: this rule has attracted quite a bit attention within
non-equilibrium statistical mechanics as a minimal deterministic model for various
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phenomena from crystal growth to traffic jams.

Already from this Example we see a phenomenon that is of critical importance. The
rule 40 looks transient in the sense that a generic initial state seems to die quickly
off. But as we saw it quite isn’t hence the classification of rules requires care. What
does transient for most initial states really mean? In simulations CA seem to fit
a handful of distinct behavioral categories but to really classify them is a different
matter. None of the proposed broad classification theories has a firm foundation
and it is not clear that there ever will be such theory. This is a consequence of the
model class at hand being too big i.e. containing elements that lead to undecidability
problems. This is useful to keep in mind as we consider some other rule and also
try to find subclasses of CA that might yield to rigorious methods.

Example 3.5.: The top left evolution in Figure 3.2. is that of a radius 1/2 binary
rule. There are 16 such rules and they can be numbered the same way as the ECA
(actually these are even more elementary, call them Fundamental CA). The rule in
question simply sends 01 and 10 to 1 and the other two binary doubles to 0. We
denote it by the code FCA Rule 6. The evolution is drawn to alternate between the
lattice Z and its dual lattice Z + 1/2.

This rule is a close relative of the ECA Rule 90 of Example 0.3. As we will
analyze these later we just note here that these are as “chaotic” CA as they come.
The exact degree of mixing will be decided later.

The evolution to the right at top of Figure 3.2. is that of ECA 22 ({{001, 010,
100} — 1}). It is a strange rule of which very little is known rigorously. For some
reason it seems to support long range order. The initial sfate here is engineered.
Off-center is generated from blocks §; = {0000,0010} with equal probabilities and
at the center there is the block 11. A careful inspection reveals that this initial state
generates two distinct topological defects in the following configurations. These
are dislocations in the ordered phase generated by the block alphabet S4. The defects
perform unbiased random walks (can be proved). When the two defects meet near
the center of the figure they give rise to a “complex” phase with distinctly different;
density of ones in it (about .35 instead of the 1/4 on the outside).

The bottom left evolution is that of a radius 1/2 CA with six states. The states
are in three groups, each containing two elements. For clarity the groups/phases
are coded to white, gray and black. It can be proved that the phase boundaries or
particles perform random walks. Both annihilations and coalescings are visible. An-
other variant of the theme is on the right: when also branchings of phase boundaries
are allowed and they occur with suitable intensity avalanche-like particle creation
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can result. The initial state on the left is uniform Bernoulli on the symbols, on the

right uniformly Bernoulli on subalphabets, which are set in two contigucus blocks.

I

Figure 3.2. Evolutions under FCA 6, ECA 22 and two three-species rules.

The samples in Figure 3.2. are also to illustrate another aspect of CA: rules, when
their principles are properly understood, can be synthesized to perform various
(physics-like) phenomena. As completely discrete systems CA are extremely effi-
cient to run on computer (especially parallel such) and thereby provide a way of

simulating other systems.
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The rules in Example 3.5. seem to have a chaotic component in them. The charac-
teristic property of a chaotic CA is that from most initial states the evolution tends
to a disordered state. As such states are naturally described in terms of measures
these CA are the likely candidates for some of the ergodic theoretic principles to ap-
ply. Before proceeding to that we take a look at yet another, qualitatively different

class.

Example 3.6.: Instead of drifting towards a homogeneous disorder a few CA
seem to generate from almost all initial state localized structures travelling in time
like particles. Furthermore these particles can come in great variety and be stable
objects to the extent that their interaction properties with other similar structures
can be laid out.

A case in point is the ECA Rule 110 in Figure 3.3. showing a menagerie
of particles. Here 001,010,011,101 and 110 map to 1. The initial state is again
disordered but note that it is now wider that before, 400 cells. This is necessary to
see the key action, the particle formation and interaction. The length-scale of the
interaction is distinctly larger than in our other examples. The rule seems to have
an attractor which is the ordered background phase (spatial period 14, temporal
period 7) in which the particles are cracks. Note that several of the particles are
capable to soliton-dynamies: they pass each other without changing their type or
direction but experiencing a slight delay. This rule is known to support universal
computation: by arranging the initial state the particles can be made to perform
any Boolean logic operation and thereby implement any recursive function.

Suppose that we start the CA action on the full shift X = 5% as in most
examples above. If the CA is not onto then the set X* = F*(X) is a shift invariant
closed subset of X. In some cases it should have a fairly simple description like in
the context of the ECA Rule 40 but it is not in general a subshift of finite type.
But for all finite ¢ it is a sofic system i.e. a regular language. So any finite time
set has a description in terms of a finite graph and one can further characterize the
complexity of the CA evolution by measuring the size of this graph. The infinite
limit of X can be an extremely complicated object. For some (exclude onto rules for
non-triviality) rules it is known to still be a regular language, but in general it can be
any language in the Chomsky hierarchy, i.e. also context-free, context-sensitive or
unrestricted. To get an idea what it might be a given automaton one could e.g. look
at the exponential growth rate of the number of nodes in the minimal describing
graph (a topological entropy like measure), but there are striking counterexamples
to this, too (i.e. a fast growing graph sequence has a trivial limit).
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Figure 3.3. ECA Rule 110 evolution from Bernoulli(1/2) initial state.

The problem of classifying CA is related to this phenomenon. If the classification is
based on the long-term behavior then one has to be able to sort out the structure of
the set X for the set of CA under consideration. But if the CA set is not carefully
chosen it may contain elements whose asymptotic properties are undecidable whence
a statement cannot be made on the behavior of the CA in that set.
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References. Cellular automata were invented by the mathematicians John von Neu-
man and Stanislav Ulam in the early fifties. They didn't get very far with the theory as
there were no suitable computers yet around to simulate the rules to guide their intu-
ition. Von Neuman was among many other things interested in defining life by instilling
its essential ingredients lying underneath the wrappings of chemistry and biology. To
this end he was able to construct a (very complicated) self-reproducing CA. A long
latent period followed until John Horton Conway in the early seventies published the
rules for the Game of Life (see Example 1.4.). It caused an explosion in activity, mostly
recreational, but also a few notable scientific results the prime being perhaps the imple-
mentation of universal computer in the GoL. This stimulus was likely to be still felt when
the current wave of scientific assault started in early eighties. Among the key figures
in the beginning were Margolus, Toffoli and Wolfram who together with many others
mostly in the physics community systematically compiled a bulk of data on CA as well
as build hardware and software to simulate a large variety of rules. An effort was made
to fit the data to existing statistical mechanics theory but the subject provided problems
that stretched the classical notions. A bit skew but still comprehensive summary of the
non-rigorous work by mid-eighties is [Wo]. Theoretical results stated emerging after that
time and these days there is a steady stream of even rigorous results surfacing. Notable
recent results include e.g. the universal computation in the Rule 110 proved by Cook.
The subject matter is acknowledged to be rather deep, its analysis requiring new notions

to be formulated and seems that many CA rules are still beyond mathematics.

There are a number of ways modifying the set-up from the deterministic CA we are
considering. If the up-date rules have a random component in them the systems are
probabilistic CA. These in turn are close to interacting particle systems studied in prob-
ability theory and motivated by the Ising model and other such statistical mechanical
models. Note that is these models the up-dates are asynchronous, a significant demarca-
tion from the standard CA An altogether different approach to the subject are the lattice
gas CA In them a lattice is fixed and so is usually the number of particles living on the
lattice (or their density if the lattice is infinite). The particles move from one lattice site
to a neighboring one according to where their discrete valued momentum vector points.
The CA is defined by giving the collision rules i.e. what is going to happen if two or
more particles are entering the same site simultaneously. These CA have turned out to
be quite useful in simulating e.g. fluid flow and also sorne rigorous results exist for them.

For more details see [TM].
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3.3. Permutivity

In this section we single out one subset of CA that have properties that make them
amenable for mathematical analysis. The modest aim in here is to present the first
statements together with their proofs and to motivate and state a few more involved

results.

We start with the a definition which should be thought as describing the information
transmission properties of a rule.

Definition 3.7.: The block map f(z_,,...,%,) = x{ is right permutive if for
any fixed block of length 2r, (x_,,...,2z,_1), the map from z, to =} is a permuta-
tion. Left permutivity is defined in a symmetric fashion. If a block map is both
left and right permutive it is called permutive.

The left-shift CA of Example 3.4. is right permutive but not left permutive and
identity block map is neither. A symmetric CA rule that is left permutive is of
course right permutive. The usefulness of this concept is indicated by a simple

consequence:
Proposition 3.8.: A left/right permutive CA Is onto.

Proof: Suppose that the rule is right permutive. Given y € X and a block
(T_py...,Zr—1) by the right permutivity we can choose z, so that f (z_,,...,z,) =
Yo. Proceed inductively to find out all z;, ¢ > r from y;, j > 0. But there is nothing
special about starting at the origin i.e. we can start the induction from arbitrarily
far to the left. Hence any y has a preimage. |

Note that not every surjective CA is permutive. The trivial counterexample is the
identity CA Can you think of others?

As we are gearing towards ergodic theory a useful consequence of the permutivity
(surjectivity) is the measure preservation. Recall that the uniform Bernoulli mea-
sure on the sequences from an alphabet S, pug, assigns the probability 1/|.S| to each
symbol independently.

Proposition 3.9.: A left/right permutive CA on the alphabet S preserves the
uniform Bernoulli measure ug on the configurations.

47



Proof: Again suppose right permutivity. Given the (z_,,...,z,_1) block we see
that if the entry z, is uniformly Bernoulli distributed then by the permutivity so is
the image of the block, yg. y1 is similarly determined by the next (overlapping) block
of length 2r on the right and the entry z,1. Moreover yo and y; are independent
because z, and z,+1 are. Inductively one extends this to all of the coordinates. By
the construction any k-tuple of y;’s is independent so the measure on the image is

again uniform Bernoulli. |

Given an infinite CA evolution 2 = {F(z)}7"  from the initial state z € X we
can define a second shift, the temporal shift, o;, simply as o,z = F(z) (or on z(2
as (atw(z))i = (:c(2))1. E As the measure pg is preserved under the global (one-sided
permutive) CA map F' there is an induced measure on the evolutions of the CA This
measure, call it u(?), is by the Proposition invariant under the time-like shift o;.
This property is called stationarity or time-independence. This is a fundamental
property of any physical system in equilibrium and it could be vaguely interpreted
as no time-instance having a particular position in history (to make this really true
extend the evolution to be also timewise bi-infinite i.e. starting from —oc). It is
essential for any ergodic properties to hold for a system. On this background the

Proposition could be interpreted as how stationarity enters to CA evolutions.

3.3.1. A case study: Rule 90

In this section we will analyze the mixing properties of the simplest permutive ECA
It was introduced in Example 0.3. and goes by the code number 90. Turns out that
this CA is actually as a factor hidden in a number of other cellular automata and
provides an explanation to their chaotic-like behavior. Moreover the here analysis
can be readily extended to a number of other permutive CA

Recall that Rule 90 maps 001,011,100 and 110 to 1 whereas the other two binary
triples map to 0. The first observation is that the rule table i.e. update to zo from
time % to time § + 1 can be compactly described as

ol gt + 2t (mod 2). (4.1)

From this it is plain that the rule is symmetric and permutive and hence onto (but
the global CA map F' is 4-1). Moreover it has a very strong property formulated as

follows.

48



Definition 3.10.: A CA F has additive superposition property if for any two
configurations x and z' in §% it holds that

Flz+z') = F(z)+ F(z') (mod |S]).

To appreciate this property we should view the space of configurations X = $§%
as a compact group the operation being coordinatewise addition modulo |S|. So if
x,2' € X then (z+z'); = z;+2z; (mod |S]) V. The property above tells us that
the map F' is compatible with the underlying group structure; it commutes with
the group operation. We say that F' is a group homomorphism.

Rule 90 clearly has the additive superposition property. It enables us to de-
compose its evolutions to the simplest building blocks. To see how this works let us
consider the rule acting on a configuration with a single 1 at origin and the rest of
the coordinates 0’s. The resulting evolution is Pascal’s triangle modulo 2 illustrated
in Figure 3.4. (64 steps).

Figure 3.4. Pascal’s triangle modulo 2.

Given a general initial configuration x one should think of a copy of the infinite
Pascal’s triangle to be attached at every site j where z; = 1. The state at any point
(4,1) in the evolution {F’(m)};o is then obtained by superimposing modulo 2 the
values in the triangles. A particular consequence of this is that changing the value
of a single site in the initial configuration flips the values in the Pascal’s triangle
attached at the site. Hence we see an extreme sensitivity to initial condition, a
characteristic feature of chaotic evolutions.

To make a more exact statement on mixing properties we need some theoretical
tools. For more details of these see [Kat] or [HR].
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Definition 3.11.: The character of a compact group H is a complex-valued con-
tinuous homomorphism g : H — H with unit modulus i.e.

lg() =1 g(h+h') = g(h)g(h).

Characters form a group called the dual group of H denoted by H. H is a com-
mutative group pointwise multiplication being the operation.

The character group of X = {0,1}? is a countable group G' whose elements are
sequences of the form g = {g;}_.,, g; = 0 except for a finite number of j’s for
which g; = 1 (exercise). They evaluate to +1 by

= IO - 2250 = (-)ZT5"

On the character group we have an induced homomorphism. Given a character g
we say that the dual homomorphism of F' is £ F(g) = g o F {the definition is
as that of any adjoint operation). So £ is again a map from {0,1}Z to itself and as
it quickly turns out that Fis given by the same rule (4.1) so we drop the hat.

From the observation that Pascal’s triangles are infinite and cannot completely
cancel each other if rooted to different coordinates we see that for any non-trivial g
the orbit { Ft g} is infinite. Furthermore by Proposition 3.9 the map F' preserves the
uniform Bernoulli measure ¢ on G. Then by the result in Appendix 2. the action
of the map F is ergodic with respect to . Furthermore as the action with respect
to the spatial shift is independent one can show that the joint action (j,4) — o7 F*
is ergodic.

To make use of the result consider the frequency of a pattern in a generic
evolution from g. To formulate this let E be a finite subset of Z x Ng and P: £ —
{0, 1} the pattern of zeros and ones on it. Let p(z) = 1 if (ajFix) = P(j,1) for all
(4,1) € E. So p indicates the pattern P. Using the the ergodicity and the fact that
the actions ¢ and F commute one deduces an ergodic theorem for this CA:

Theorem 3.12.: For p almost every x € X the asymptotic frequency of the pattern
P is given by
i
A o T T 2n+1 ZMZP (o7 Fe fxpd’u'

Remark: One should pay attention to the following detail. Just by knowing that
the uniform Bernoulli measure p is preserved under ¢ and that the o-action is
ergodic we can apply the ergodic theorem to any finite block of symbols e.g. compute
the frequency of [010101] at time zero. Furthermore knowing that y is preserved
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by F we can do the same at any fixed iterate. But to find the frequency of any
genuinely two-dimensional pattern we need the joint ergodicity of the actions. In
particular using the result the most visible feature of the evolution of this CA can be
formulated. One can compute the frequency of the inverted triangles as a function
of their size (exercise).

The Rule 90 has multiple invariant measures, most of them concentrated on periodic
points (e.g. umit mass on the all-zero configuration, dp). Among the Bernoulli
measures pp,, where p is the density of ones, p = 1/2 is the only invariant one
(suppose 0 < p < 1 for non-triviality). We now indicate how the CA evolves from
the non-invariant u,’s.

The weak convergence of measures {1, } means that [ fdiv, — [ fv for all con-
tinuous functions f. From real analysis {e.g. [Ka]) we know that weak convergence is
equivalent to the Fourier transforms converging pointwise to the appropriate limit:
Dn(g) — ©(g) Yg. The Fourier transform of a measure v on X is in turn defined as

5(g) = jX g(z)dv(z) geG.

(the symbol g is no accident: e.g. on the compact group [0,1} the characters are
the functions t — e and in general the abstract Fourier transform is equivalent
to evaluating a character). Since F' is a homomorphism on X we have f‘:;z(g) =
i (F‘ g). So to determine whether the sequence of measures F* i converges it suffices
to consider the pointwise convergence of the functions [ (F ig) . This fact is useful
for us here since the Fourier transforms of p, can be computed (for the details see
[Li]) and one gets

Theorem 3.13.: For p # 0,1/2,1 the sequence {Fi,u,p} does not converge but the
Cesaro average & 2?2—01 F'u, converges weakly to the uniform Bernoulli measure p.

The ECA Rule 90 evolution from a disordered state with density of ones exceeding
1/2 results in density fluctuations upto arbitrarily high iterates. But their spacing
is so thin that the Cesaro average isn’t affected.

After these technicalities let us step back and make a couple of general observations
which also motivate the following section.

The Rule 90 is a bit redundant. By inspecting it one notices that every evo-
lution splits into two completely independent parts which together form a checker-
board. If the initial state is  the entries {zp;} completely determine the sites
{F(z)2;11} which determine {F?(z),;} and so on. Same with odd initial coordi-
nates. The action of the Rule 90 on the components is upto spatial scaling by factor
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2 identical to the radius 1/2 FCA Rule 6 introduced in Example 3.5. Indeed the
analysis above could be done for this rule with only slight extra bookkeeping to
account the appearance of the dual lattice.

There is actually a rather general result in the lattice action set-up which tells
that an ergodic action is immediately mixing, too. So in particular the joint action
of ¢ and FCA 6 is mixing. This result by the previous observation carries over to
Rule 90.

Finally it should be noted that the machinery used in this section is available
for additive rules on any alphabet with |S| being prime. Non-primes cause some
technical problems but similar results can be proved for them with other methods.

References. Permutivity was introduced by Hedlund in his seminal study [He]. The
measure theoretic ramifications discussed were first formulated by Coven and Paul [CP].

The analysis of Rule 90 follows the ideas of Lind [Li].
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Version 2.2 24.11.2011 Kari Eloranta

3.4. Subpermutivity

The definition of permutivity cannot be effectively extended to other entries than
the extreme left and right ones of the block map. By this we mean that the key
surjectivity result (Proposition 3.8.) is obtained only when a distal entry permutes.
This motivates us to redefine the CA in a way that makes permutivity a more

natural concept and moreover immediately suggests ways of generalizing it.

Definition 3.14.: Given the set of 4r-tuples of symbols in § a block map f of radius
r defines a mapping from it to 2r-tuples. On the new alphabet T' = {0,1,...,|8|* —
1} we thus obtain an induced cellular automaton map f on two-blocks: f :
TxT—>T.

Examples of two-block maps induced by rules of radii 1 and 3/2 are shown in
Figure 3.5. Note that the blocking introduced here does not need to preserve the
symmetry of the rule unless a permutation in the 2r-blocks is also accounted. In
the subsequent analysis we primarily deal with the two-block representation and it
secondary whether it was obtained via a tiling or not. Therefore the radius of the
induced two-block rule is usually taken to be 1/2 and it is then understood that the

global CA map alternates between configurations on integers and half-integers.

i TV T 2= ) T =" TR

! |
e T Loy . 1= & 1] 4

Figure 3.5.

A graphic consequence of this definition is that the space-time evolution of the rule
is converted into a tiling. The tiles are the (2r x 1)-rectangles that are piled in the

fashion indicated in the Figure.

Proposition 3.15.: If the original block map was (right/left-) permutive (in the

sense of Hedlund) so is the induced two-block map and conversely.
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Proof: Pick t(¥ = (t(li), L ,t;i)) eT,i=1,23,let t? £ ¢t and suppose that
they agree upto the k'®, but disagree at the (k+1)t coordinate, some k < 2r. If the
(2r + 1)-block map is right-permutive then f applied to ¢(V¢(2} and ¢t(}#(3) cannot
match beyond the kt® entry. So f(t(%), 1) is injective (and surjective).

Conversely if f in not right-permutive there is a 2r-vector and distinct s, s €
S such that f(t1,...,%2r,8;) agree. But then augment from the left the vectors
(t1,...,t2r, 8;) to two 4r-vectors. f on these agree so its permutivity fails. |

The two-block map allows a simple algebraic formulation of CA since we are given
a finite set of symbols T closed under a binary operation f between any two of
them. If in the equation f (t1,%) = t3 between symbols from 7" any two determine
uniquely the third one the system (7, f' ) is called a quasigroup. If it moreover
has a identity element it is called a loop. Hence an alphabet with a permutive
two-block CA map is a quasigroup or a loop. Note that these are not necessarily
groups since associativity is not assumed and this would indeed be unusual for a
CA action. They are nevertheless rare since they are the latin squares on the given
alphabet. For a strictly subpermutive CA the entire alphabet together with the
two-block rule is not a quasigroup but it has subsets which are (or are even loops).
Note also that the identity, if it exists, is unique and forms a subalphabet by itself
but it does not need to be contained in every permutive subalphabet. If a rule has
a quiescent state i.e. a symbol s € S such that f(s,s,...,s) = s then of course
the two-block rule fixes the appropriate symbol £ = (s,...,s) and f (¢,t) = ¢ holds.
The symbol ¢ is a natural candidate for the identity.

The Cayley table will provide a compact representation of a rule. As an ex-
ample we have included in Figure 4.6. the table of the Klein four group and a sample
of the CA evolution corresponding to it. On the right we have the multiplication
table of the elementary cellular automaton Rule 18.

0123 0123
ofo123 0112208 3810282 00122
111 0.8 2 1030230021211 11000
22301 133213023330 22300
33210 20132321003 31000

Figure 3.6.

The Klein four group is actually the Cayley table of one of the four permutive ECA,
the Rule 90. By inspecting the Cayley tables of the others one immediately notices
that the rules 90 and 165 are groups and 105 and 150 are asymmetric quasigroups.
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Moreover the first two are a conjugate pair i.e. (po fog)(8,8") = fiss (p(s), p(s"))
for some permutation p on the four symbols and so are the last two. But by the
stated asymmetry e.g. 105 cannot be conjugate to either 90 or 165.

Permutive cellular automata even in their one sided form are quite rare. For ex-
ample out of the 16 rules on binary doubles two are permutive and of the 256
elementary cellular automata there are 4 permutive and 24 left- or right-permutive
ones. However permutivity prevails in a partial form in many rules and can still
dominate the behavior of the rule as we will see. We now proceed to formulate
partial permutivity and its measures for two-block rules.

Let f be a two-block map on an alphabet T. Suppose that 7} and T, are
subsets of 7" such that f(l,-) and f(-,r) are permutations for each I € T; and r € T},
respectively. If p; = |T;|/|T| and p, = |7;|/|T| then the rule f is called (p;, py)-
permutive. If p; = p, = p it is simply called p-permutive. This definition however
does not have useful closure properties and we therefore proceed to refine. By a
maximal subalphabet with respect to P we mean a subset of the full alphabet with
a property P such that if this subalphabet is augmented with any element from its
complement it loses the property.

Definition 3.16.: A subset T, is a right-invariant subalphabet of T if f(r,T,) =
T., Vr € T, i.e. f(r,-) is right permuting on T, for each r € T}.. Left-invariant sub-
alphabets are defined in a symmetric way. If T} and T, are maximal such subalpha-
bets and p; = |T1|/|T| and p, = |T-{/|T}| the rule is called (p;, p-)-subpermutive.
If these maximal subalphabets coincide then p; = p, = p and the rule is called
p-subpermutive.

Remarks: 1. A left-invariant subalphabet does not need to be right-invariant and
even if T; and T, are unique they are in general different. For a symmetric rule they
of course agree.

2. Only rules that are 1-permutive can be additive. The strictly subpermutive rules
have a nonlinear character when not restricted to one of the invariant subalphabets.
In particular this implies that the Fourier analytic techniques of the previous Section
will not be of much help and one has to argue with different methods.

Given a subalphabet 7 C T the subset X’ = (7")% C X = T% consisting of
sequences from this subalphabet is said to be generated by 7" or tiled by 7"-
blocks if these are induced from a wider block map. By the surjectivity if the
subalphabet 7" is either left or right invariant then the image of X’ under the CA
is also generated by T".
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Example 3.17.: The ECA Rule 18 is defined by requiring that 001 and 100 — 1
while the other binary triples map to 1. It induces a two-block map on symbols
{0,1,2, 3} which has the permutive subalphabets are 77 = {0,1} and T3 = {0, 2}.
This can be readily seen from the Cayley table on the right in Figure 3.6. The
action of the induced CA map on the subalphabets is that of FCA 6 on binary
doubles (see Example 3.5.).

Example 3.18.: The ECA Rule 22 is defined by requiring that 001, 010 and 100 —
1 (call the block map 732). The induced two-block map only has one invariant
symbol (00) which generates the quiescent state. The square of the rule, 75, is
of radius two and the two-block map it induces on the alphabet {0,1,---,15} is
1/8-permutive. The six maximal (left- and right-} invariant subalphabets are {0, 1}
and {0, 7} i.e. tile sets {0000, 0001} and {0000, 0111} together with their translates.
The action on the subalphabets is again radius 1/2 Rule 6/16. Higher powers of
792 yield families of larger tiles which seem however to be just piles of these.

3.5. Interaction of subalphabets

The interaction of two subalphabets/tilings can lead to different phenomena. We
present here only the rudiments of the theory: the basic definition and a few special
cases indicating the possibilities.

Definition 3.19.: Given two subalphabets S; and S; let A = §1 N Sy be the set
of ambiguous symbols. If it is nonempty it is by itself an invariant subalphabet.
Ambiguous symbols are receding i.e. f(s,a)€ S;\ Aforallse S;\ A, a € A and
i = 1, 2. The configurations in the set

8182(3) = {{Sk}| sg € 81 Vk <7, sp € 53 Vk > j and 83y 8541 ¢ A}

are said to have a boundary point at 7+ 1/2.

The set of ambiguous symbols is usually empty or consists of one elemment which
is generated from the quiescent state. Note that if the subalphabets are disjoint
(A = @) then every configuration in 515, (i.e. left half generated from S; and right
from 85) is in 5155(7) for a unique 7. If A # 0 then any configuration of the form
S1AS; where A is a finite block of symbols from A is eventually reduced to the form
515, (the A-block is shortened by one at each iterate of the automata hence the
number of iterates needed to this reduction is |A|). Therefore the definition above
applies again and we define the location of the boundary point in between these
instances by interpolating,.
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In physics terminology one might call the configurations generated from an
invariant subalphabet as phases or ground states and the just identified boundary
point as the phase boundary/topological defect/kink/dislocation (all these names
and others are actually used in physics literature...).

Example 3.20.: In the Example 3.17. we identified the subalphabets T3 = {0,1}
and Ty = {0, 2}. The ambiguous symbol is T1NT3 = 0 which generates the quiescent
state. In Example 3.18. the square of the rule has the ambiguous symbol 0000
again generated by the quiescent state. However it is possible for a rule to have an
ambiguous symbol which is not generated by the quiescent state (exercise).

The basic case is the one where the collection of sets 51.55(7) is closed under a CA
map. In this inert case the boundary will prevail at all times and no new ones are
created.

Example 3.21.: In the Example 3.17. the boundary between the subalphabets
defines a defect and the action of the FCA Rule 6 (induced by the ECA Rule 18)
is inert on 71173. Ordered in the reverse direction the action is not inert anymore
since symbol 3 = 11, is produced but the multiplication table (Figure 3.6., right) is
of course closed. Here the ordering is not essential in characterizing the motion of
the boundary point. This case was analyzed in [EN] where it was proved that the
phase boundary performs an unbiased random walk.

If in the table the shaded element is changed into 0 we have a perfectly sym-
metric (and closed) CA action on a subalphabet and a unbiased random walk will
prevail under iteration. However if instead we have 1 or 2 in this entry then the
configurations 75T} show T3 or T3 respectively dominating i.e. winning all the inter-
actions not involving the neutral element 0. As a result the phase boundary moves
in a monotone fashion at maximal speed (1/2) either to the left or right.

The two distinctly different types of motion that a boundary point can have are
those of a signal and a random walk. By a signal we mean rectilinear trace in
the space-time-diagram i.e. a motion with constant speed on he background. Upon
creation this motion is straight forward. Upto a possible collision with another
structure it is only dependent on its the creation i.e. a localized part of the initial
configuration. On the other hand random walks are motions which exhibit strong
dependency to the initial configuration. If this is distributed according to the ap-
propriate product measure the boundary motion will perform a non-deterministic,
stationary motion and have positive variance etc. It can have independent incre-
ments and hence be Markovian but this is not the case in general. Signals can be
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viewed as degenerate forms of random walks (zero variance). See [E2] for the exact
definitions and the dichotomy between these types.

When the motion of the boundary point is considered for a CA with a random
initial configuration random walks prevail under fairly general circumstances if nei-
ther of the subalphabets is dominating with respect to the other one. This and some
other features of the interaction can be readily read from the Cayley table. Since
we do not want to get too deep into the subject and we already gave in Example of
a Cayley table generating a signal we cap things off by showing a basic argument
in the diffusive case. The general theory is in [E1&2].

Consider the simplest case i.e. where the alphabet § partitions into two subalpha-
bets 57 and 53 each consisting of two symbols. So there are no ambiguous symbols.
Suppose that the radius 1/2 CA F acting on X = S% (and the dual) has a Cayley
table where the off-diagonal 2 x 2 matrices are such that each row and column has
one symbol from each subalphabet. Finally let » be the measure on X formed by
joining the uniform Bernoulli measures on X = az -0 and X = SE,Z_*a, a=1o0r
2. The measure is supported by either of the subsets of configurations S,S55_, i.e.

the initial configuration has exactly one defect, located at 1/2.

Theorem 3.22.: Under the iteration of F' the boundary point performs an unbi-
ased nearest neighbor random walk. It has independent and identically distributes
increments +1/2 and unit variance 1/4 from v-almost every initial state.

Proof: Without loss of generality suppose that ¢ = 1 and that the defect is at time
i at j;. Consider the triangle T; with vertices at (j;,4+ 1) and (j; £ (i +1)/2, 0).
Define the backward cone of the boundary pair centered at j; at time i to be the
set T; \ {(4i»i + 1)}. The past of the walk at time ¢ is clearly contained in this
backward cone and the cone determines the next jump i.e. value of the cell at
(7i,i + 1). Suppose that the walk jumps to the right i.e. the cell at (j;,7+ 1) is in
S1. We claim that given the backward cone at time ¢ the value of the neighbor at
(j; + 1,4 + 1) is determined permutively by the entry at (j; + (¢ + 3)/2, 0). This
follows by noting that as (j; + (¢ + 1}/2, 0} is now fixed (j; + (¢ + 3)/2, 0) permutes
(4: + (i +2)/2, 1) and then iterating this argument i times. So the next jump is
independent of all the previous ones. Moreover as the symbol at (j; + (i + 3)/2, 0) is
uniformly distributed in Ss so is the symbol at (§;+1,i+1). By the column structure
of the off-diagonal 2 x 2 matrices the jumps to both directions take place with
probability 1/2. Therefore the unit variance is simply 1/2(—1/2)2+1/2(1/2)? = 1/4.
|
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Remark: The case here is the cleanest and in particular the walk is Markovian.
In general the walks are non-markovian but that does not prevent from analyzing
them. Also the biassed case can be treated and the exact drift etc. computed.

Example 3.23.: An example satisfving the assumptions of the Theorem is given
in Figure 3.7. The subalphabets are S; = {1,2} and S; = {3, 4}. The 2 x 2 matrices
on the main diagonal show that the CA action on invariant subalphabets is that of
FCA 6 on binary doubles (see Example 3.5., just the coding is here different). The
framed off-diagonal submatrices determine the boundary point motion.
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Figure 3.7.

The next step after pinning down the motion of individual boundary points is to
characterize their interaction. As one might guess after seeing Figures 3.2. and 3.3.
that in general this is a rather tall order. But it turns out that even the diffusive
case i.e. random walk ensembles can be analyzed to a considerable extent (but not

in this course).

3.6. Asymptotics

We will now take a step back from the partial permutivity formulation and consider
general principles in the convergence of iterates of non-surjective CA. Our particular
aim is to distill the appropriate concepts to use in this context. The fact alone that
our dynamics is on an infinite sequence space forces some special consideration in

comparison to e.g. flows on manifolds.

Given a map T : X — X we have already encountered invariant sets. Any limit
set of a converging iteration clearly has to be invariant but to proceed a bit beyond
this we first review some classical notions from the dynamical systems theory.
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Definition 3.24.: A point z € X is non-wandering for T if for any open neigh-
borhood O of z there are arbitrarily large i such that T*(O) N O # §. Let the
collection of all such points be the non-wandering set NW(T').

The w-limit set is the set of all possible limits: w(zx) = {z' € X|T%(x) —+ a'}.
Its elements are called the w-limit points of z. If ¢ € w(z) we call ¢ positively
recurrent.

A closed invariant set A C X is an attracting set if there is a neighborhood U of
A such that T*(z) € U for all i > 1 and T*(z} — A for all z € U. The set U;<oT" (U}
is the basin of attraction of A.

Remarks: 1. A non-wandering point is on or near an orbit that comes back close
to it. So fixed and periodic points are clearly non-wandering. NW (T) is a closed
and invariant set, hence necessarily contains the closure of all fixed and periodic
points of the system. It also contains all w-limit points. For a compact space X it
is always nonempty. Wandering points are not relevant to the asymptotics whereas
non-wandering points are.

2. An attracting set ultimately catches all orbits starting from its basin of attrac-
tion. The basins of attraction of distinct attractors are non-intersecting,.

As we have seen in non-surjective CAs there is a fairly general phenomenon for
evolutions from a random initial state to generate ever larger tiling-like patches.
These structures correspond to bi-infinite sequences that are both spatially and
temporally periodic. It is of major interest to characterize the convergence towards
them. This is a delicate problem - sometimes results can be achieved, sometimes
they are impossible, but for varying reasons.

Example 3.25. Recall the ECA Rule 184 of Example 3.4. It is fairly straightfor-
ward to see that among the invariant sets there are at least 0°°, 1°°, 0°°1*° and
{(01)°°, (10)>} (the third means that left and right tails are all-0 and all-1 respec-
tively). The last set of course generates the prominent spatial/temporal period 2
checkerboard pattern.

Some limits sets are clear because of the dominance of certain 2-blocks (see also
Exercises). For example if the initial configuration is z = 0°°B1°°, where B is any
finite block of 0’s and 1’s, then the w(z) = 0°°1°°. If the infinite 0- and 1-tails are
swapped, then w(z') = {(01)°°, (10)*°} . This is a simple but important observation:
the given invariant set takes over since all particles annihilate by in finite time (by
Lenght{B)/2 in this case).

If the initial configuration is distributed e.g. B(1/2) then almost surely there
is no finite time when every left- and right-going particle has forever cleared out
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a neighborhood of origin. Particles of each type will forever pass origin so there
cannot be an attractor in the sense of Definition 3.24. for a set of full measure,

Indeed the situation is even more frustrating: by the same argument none of
the given invariant sets can be attractors in the sense of the Definition above.

The Rule 184 is by various empirical studies a rather simple one in comparison
to e.g. the Rule 110. In the latter rule the generic behavior nevertheless seems
similar: ever larger patches of a spatial/temporal period 14/7 configuration form.
However knowing that the rule is capable of universal computation we know that
this certainly cannot prevail for all initial configurations. We can (at least in prin-
ciple) program particles of various kind to arrive at origin at arbitrary large times.
Characterizing a large nontrivial set of “dummy initial states” for which particles
clear out from arbitrarily large neighborhoods of the origin seems very hard.

In the examples above we have already augmented the topological considera-
tions by introducing a measure. Here is one attempt to proceed:

Definition 3.26.: A periodic orbit P is a u-attractor if there is a set B of positive
j-measure with the property that w(z) = P for all z € B.

Remarks 1.: The concept of p-attractor was introduced by J. Milnor in 1985.
Later M. Hurley showed that if a CA has a periodic u-attractor P then the points
of P must all be fixed by every shift of the lattice (for now just o). Hence the points
are constant sequences and there are at most |S| of them. Moreover P is the only
p-attractor of the CA and w(z) = P for p-almost all z € X.

2. It is worth noting that a periodic point being u-attractor does not imply stability
in the classical sense but allows orbit “detours”. In smooth dynamics like that
defined by differential equations the stability of a fixed point is usually due to
contraction (which one can establish via linearization) and stability follows. CA
being block maps on a Cantor set X are essentially never contractions.

The result above by Hurley applied to Rule 184 means that the only possible u-
attractors could be 0™ and 1°°. But neither is a w-limit set to a nontrivial set,
so they are e.g. not B(1/2)-attractors. The Definition above seems like a step
towards the right direction though since introducing w-limit sets frees us from a
predetermined iterate sequence by which the periodic state is reached.

To test the notions further let us also consider the second type of topological
defects, the diffusive ones.

Example 3.27. Recall ECA Rule 18 of Example 3.17 (001,100 — 1, else to 0,
Cayley table in Figure 3.6., right). We have found its smallest invariant sets to be
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0°° and {{00,01}*°, {00,10}°°} We might want to call the latter the support of the
ground state.

Using the principles of Section 3.5. we know that configurations of the form
{00, 01}°°{00, 10}°°, both tails nontrivial, have exactly one topological defect in
them. If we put B(1/2} on the double symbols the usual way, the defect will persist
for all times and perform a symmetric random walk. Hence by standard probability
theory it is recurrent to origin (see e.g. [KT]). Consequently we cannot have the
ground state as an attractor in the sense of Definition 3.24. although most of the
time the neighborhood of origin looks exactly like the ground state.

If we use an initial measure introducing an ensemble of defects, various com-
plications arise. If there were initially a finite number of defects, the measure
again B(1/2} the appropriate way and the defects would move jointly indepen-
dently (which they don’t), then almost surely they all would be annihilated in finite
time except perhaps one {(depending on the initial parity). In fact this can be proved
for e.g. Rule 18 without any extra independence assumptions on the joint motion.
So in this case the w-limit would again be the ground state.

If the initial configuration is given from B(p), p # 0,1 on {0,1} then there is
an infinite number of defects at all times. However due to the diffusive behavior
their density is expected to be decaying in time like i~1/2. The same conclusion
with respect to the w-limit set should therefore hold.

The examples above indicate that perhaps the right mode of convergence to aim
at is Cesaro-type. In the CA that we have considered for any B(1/2)-large set of
initial values the defects will prevail for all times. But whether rectilinear or random
motions, their density in configurations will decay as a consequence of annihilations
and coalesings. Their passes of the origin, a phenomenon that sinks the Definition
3.24. for a general (non-periodic) attractor, are asymptotically negligible events if
time averages are considered.

The following formulation, here converted to CA, is in the spirit of H. Hilmy,
who proposed the idea already in the 1930’s ([Hi}).

Definition 3.28.: Given a cellular automaton F and x € X = S%, define Cent(z)
to be the smallest closed subset C € X with the property that if U is a neighborhood
of C' then the proportion of the orbit {F“'(a:)}::OI that is in U tends to one asn — oo.
A set A C X is a u-minimal center of attraction, uMCA, if there is a set B(A)
with positive u-measure with the property that Cent(z) = A for u-almost every
z € B(A).
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Using this Hurley proved that if a CA has a g-minimal center of attraction A, then
A is g-invariant and unique. Furthermore Cent(z) = A for p-ae. z € X. At a
general level this clarifies the situation somewhat, but does not resolve any of the
particular cases considered in Examples above.

References. Topological defects abound in CA and their understanding is essential
for sorting out the statistical mechanics of CA. The reason for this is the same as in
the context of the Ising model. The key objects are the kinks or the contours i.e. one-
or two-dimensional defects, which determine the energy of the system ([Ba]). Defects
in CA were first studied by Grassberger (see his article in the same special CA issue as
[Li]). The notions of partial permutivity and invariant subalphabet were introduced in
[EN], [E1] and {E2] to resolve a number of open questions concerning topological defects
and their ensembles in one-dimensional CA. For more detailed takes on both classical
and modern versions of concepts like attractor see e.g. [GH], [M2], [Hi] and in particular
in CA context the paper [Hu].

The notion of partial permutivity generalizes naturally to higher dimensions. Determin-
istic Ising model (including voter models as zero temperature cases) and growth models
have remarkably similar behavior to their classical counterparts which are utilizing var-

ious independence properties ([E3] and references therein).
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4. Higher dimensional actions

4.1. Basic set-up

The subshifts considered in Chapter 2 involved one transformation, the left shift.
Its integral powers were considered i.e. the action of the group Z on the space
of allowed configurations or the action of the semigroup of non-negative integers
in case of one-sided sequences. To restrict just to one action suffices if e.g. the
interpretation of the action is that of the passing of time (one-dimensional event).
However in many instances one might want to consider multiple actions defined
on the same space. In this chapter we present the basic formulation of higher
dimensional symbolic dynamics and investigate certain new phenomena that appear

through a few examples.

The basic object of study is the following sequence space.

Definition 4.1.: Let the set S = {0,1,...,n— 1} be the finite set of symbols i.e.
an alphabet. If we assign one of the symbols to each site of the d-dimensional
integer lattice Z%, d > 1 we obtain the space X = S%° of configurations.
The cylinder sets generate the standard topology and we denote the o-algebra of
measurable sets again by B.

Remark: In most of the subsequent theory it suffices to consider the two-dimensional
case as the essential differences to the one-dimensional case arise already there. We
define the actions assuming the underlying lattice to be the square lattice but this is
not essential. We could as well study actions on triangular lattice etc. Many of the
models that one encounters can be defined on different lattices but only for a few
the properties are distinctly different on different lattices of the same dimension,

The notation z; = Z(j, ja,....;q) Will be used to denote the symbol at the site j =
(41, J2, . - ., ja) of a given configuration x € X. The set of configurations is a compact
metric space for all | 9| and any dimension d. It can be metrized in many equivalent
ways. An intuitively appealing choice is

d(z,z) =0 and d(z,y)=2" =l l27u} for g4y, (4.1)
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where || || denotes the norm on the lattice. The geometric intuition behind this will
become clear by thinking about Z2-lattice.

The basic dynamical operation on the configurations is again the (left, down,
etc.) shift.

Definition 4.2.: The k** (coordinate) shift ¢ on a configuration x € X is
defined as

(O’k.‘r) (Jl )j‘21"')jd) = x(h 2J2 1"-jk+1:---:jd) !

Multi-indices provide a useful piece of notation: let o* denote the shift o - . -cfjd.

The shifts are homeomorphisms of the space X and they commute. This simple
point is important to realize since non-commutative actions are in general much
harder to analyze.

Analogously to one dimension we call

Definition 4.3.: The dynamical system (X,B,01,...,04) is the d-dimensional
full shift.

The full shift is again topologically transitive, it has unique measure of maximal
entropy and hiop, = log|S|. It is indeed nearly as boring object as before but not
quite as can be seen from the following factoid. From permutive cellular automata
we know that there are many continuous shift-commuting onto maps F on {0, 1}2
such that |F‘1(a¢)| = 2 for all z € X. In two dimensions there are none!

Let W C Z¢ be a finite set called the window and mw : SZ* _y S the natural
projection i.e. mw (z) = z|w. Let P C S be a set of patterns or sceneries.

Definition 4.4.: Let
XW.P) {.’E e X| mw (ka) € PVke Zd}_

The dynamical system (X (W.P) B, 0'1,...,04) is a d-dimensional topological
Markov shift.

Note that this of course subsumes the Definition 2.5. of a one-dimensional SOFT.
If W is non-empty and P = SW then X (W.P) is the full shift whereas P = §
gives the empty shift. X (W.P) ig always closed and shift-invariant subset of X i.e.
ok X W.P) — Xx(W.P} byt for d > 1 usually much less trivial than the two extremes.
For example there is a novel problem immediately at hand: the question whether
X (W,P) is non-empty is undecidable i.e. there is no general finite procedure to check
whether a given set of patterns allows global configurations! We'll return to this
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later. Meanwhile the reader might want to refresh details of the one-dimensional
set-up and think why is there no such problem there.

Some unexpected problems withstood how does our scheme fit to the framework of
ergodic theory discussed so far? Turns out that many of the definitions given in
the case of a single transformation readily generalize (and the transformations do
not need to be just shifts). The notion of invariant measure works in the obvious
way to multiple actions: if the measure is preserved under all of the individual
actions oz on X (") then the measure is preserved under the joint action o* of
the transformations (check). As before we can consider the ergodicity of individual
actions but in general we would like to characterize the ergodicity /mixing etc. of
the joint actions (recall the analysis of Rule 90 — there we had for the first time two
commuting actions and it made a difference to know the ergodicity of joint actions).
Note that the joint ergodicity of the two shifts on Z? implies the ergodicity of the
action to any rational direction ko /k; (given by o¥*c¥?) which thereby implies the
ergodicity of all one-dimensional actions.

Definition 4.5.: A point x € XW:F} s periodic if it has a finite orbit i.e. the set
{o*z| k € Z4} is finite.

Remarks: 1. Note that the d-dimensional lattice Z¢ is also a group, a discrete
infinite abelian group addition being the operation (or rather the lattice is invariant
under the action of this group). It has lot of subgroups and one should view them
as groups of different types of isometries of the lattice. Another way of declaring
periodicity of a point is to say that it is fixed under the action of a nontrivial
subgroup: o9z = z Yg € G (interpret the elements of G as multi-indices). The non-
triviality just serves to dispose the cases G = {0} fixing everything and G = Z¢
fixing the configuration of period 1 to all coordinate directions i.e. a constant
configuration. But one needs to add a bit: if G is a free group on d generators then
x is periodic, otherwise it is periodic to just some rational directions.

2. Periodic points in two {(and higher) dimensions also point to a new connection.
Doubly periodic arrangements in the plane can of course be viewed as tilings the
period rectangle/rhombus being the tile. Indeed these are just the simplest of tilings
appearing in the context of Z#-actions. More complicated tilings do not correspond
to periodic points but to other types of highly ordered configurations (think e.g.
Penrose tiling).

Topological entropy is most straightforward to define using the counting argument.
Consider a d-dimensional box centered at the origin containing N lattice points.
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Count the number N(C) of allowed configurations in it (the maximum is |S|").
The topological entropy is the exponential growth rate of this quantity:

) 1
htop = 1\}}3100 i log N(C). (4.2)

It is actually not necessary to take d-dimensional boxes but it is essential to re-
tain a d-dimensional shape as otherwise one might asymptotically only count in a
lower dimensional subspace and thereby only get some a “directional entropy” (for
developments along this line see [M1}).

The transfer matrix formalism is available for higher dimensional subshifts only
in special cases. Consequently there is no straightforward procedure to compute e.g.
the topological entropy.

4.2. A few examples

There is no general theory of higher dimensional subshifts as of now. However a
number of different types of subshifts that have been worked out. The interesting
thing is that some of them have originally been statistical mechanics models, some
discovered as tilings whereas some surface from abstract corners of number theory.
In this section we indicate a few of them and point the problems involved. In order
not to lose the picture we restrict here to examples that are two-dimensional.

Example 4.6.: Let d = 2, § = {0,1} and W be the window containing the
coordinate points (0, 0), (0,1) and (1,0). Suppose that the allowed patterns are as
a and b in the Figure below.

by

Figure 4.1a, b, c, d.

It is easy to see that the two legal patterns introduce a very rigid rule: there is a
grand total of two elements in X (W-F) which are shifts of each other.

Of course we could use instead n symbols while still keeping the exclusion that
the same symbol cannot neighbor horizontally or vertically. The case n = 2 is
above. One might want to think of the symbols representing distinct colors so the
problem is that of a map coloring and the formulations are sometimes refered to as
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color models. Lieb has made significant progress on this problem when n = 3 (see
[Ba]). In particular the topological entropy is then positive and one knows how to
count periodic points. For n > 3 little seems to be known.

If S is as originally and P is augmented by the pattern in Figure 4.2. ¢ (call the
set P') it is easy to see that the configuration space becomes uncountable. However
it is essentially one-dimensional subshift! All decreasing diagonals are constant and
on increasing diagonals the rule is that of the one-dimensional full shift. Along rows
and columns the rule is the golden mean of Example 1.1. i.e. no two 1’s are allowed
to be next to each other. Consequently the growth of the size of the space X (W:F")
can be measured exactly as in the case the one dimensional golden mean. From this
one-dimensional character it is easy to deduce that the topological entropy must be
zero (exercise).

If instead the allowed patterns are as in Figures 4.1. b and d (x being the
wild-card, here two independent copies of it) we have the two-dimensional golden
mean which was introduced in Example 0.2. This is a rather subtle subshift — its
analysis has eluded both the mathematicians and physicists for decades. The latter
often refer to this model as "hard square gas”: draw around each 1 a diamond with
sidelength +/2. The allowed configurations are exactly those where no two diamonds
overlap. The same rule on the triangular lattice is the "hard hexagon model” which
is exactly solvable! The model can be defined on various lattices, graphs and trees
(on which there has been progress) and often refered to simply as the Hard Core
model.

The topological entropy of the two-dimensional golden mean on Z? is known at
least to 14 digits (0.40749510126068...) but the exact value is unknown. As there
is freedom in the choice of 1’s in every diamond the entropy must be positive and
loose bounds are fairly easy to show (exercise):

1+\/5)_

1
§1n2<htop<ln( )

Example 4.7.: One-dimensional cellular automata as we have encountered in
Chapter 3 can be viewed as two-dimensional subshifts. The change of viewpoint is
easy: the window W is simply given by the geometry of the update. As an example
Figure 4.2a. shows W for a radius r=2 rule. The set of acceptable patterns P in
W is of course given by the CA rule.

Deterministic CA have zero topological entropy. This is an immediate conse-
quence of the fact that the frame of width r determines the entire configuration in a
m x m square. Indeed even less is needed. In the Figure we show the minimal frame
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determining the entire convex hull. However the area of the frame grows linearly
in m (here it is 5m-4). So the number of possible configurations on the frame and
hence inside the m x m square is bounded by 2™, some ¢ > 0 independent of m.

S0 hiop 88 defined by (4.2) must vanish.

T

N
€

z|w <t
x|y S

Figure 4.2a, b. Cellular automata as Z%-actions.

Example 4.8.: Let the alphabet and window be as in Example 4.6. and let the
three entries in view be z,y,z. Requiring z +y + z = 0 (mod 2) for the legal
patterns defines a two-dimensional SOFT. Once we identify time running towards
SW this model becomes exactly the cellular automaton FCA 6 on binary doubles
of Section 3.3.

Suppose W is a 2 x 2 window and the allowed patterns on the binary alphabet
are determined by therule z +y+ z+w =0 (mod 2) (Figure 4.2b.). Since each
element can be solved as a sum of the three others, this rule can be viewed as a
block map on two consequtive diagonals. This is an example of a totalisticCA
since the update depends only on the sum of the entries in the block map. It is
clearly an example of a reversible CA.

The rule exhibits a lattice isotropy in its arguments i.e. there is no distinguished
time- or space-direction. In this set-up one can readily introduce anisotropy while
preserving the invertibility of the CA by defining e.g. w = f(z,y) +z (mod 2).
Here f implements the spatial dependency on the nearest neighbors in the current

generation. If f is symmetric in its arguments the rule still possesses spatial isotropy.

Example 4.9.: Let S = {0,1,2,3}, and W as in Example 4.5, Suppose that the

legal sceneries are
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1 - T 3. 3
02 |1-2 2-2) 32
Figure 4.3.

Here the minus sign stands for exclusion: —s means “any symbol but s”. Checker-
board pattern of say 0’s and 2’s quickly indicates that X (") is non-empty. Playing
around with the patterns for moment shows that indeed there is a lot of legal config-
urations and that they have a certain character: the symbols always come in pairs.
To see the geometry of the configurations let us call 0 ”left”, 2 "right”, 1 ”"bottom”
and 3 "top”. The labels refer to the ends of a 1 X 2 or 2 x 1 tiles. The patterns
just tell how to lay these in the plane in order to create a perfect tiling i.e. all the
lattice sites covered and no overlapping tiles. For this reason the generation of the
configurations of this subshift is also known as the "domino/dimer problem?”.
In the theoretical computer science context the problem is formulated as finding
the perfect matching on the graph Z? and usually referd to as “independent sets”
in their parlance.

The number of domino covers of a domain grows rather rapidly — for example
the chess board has 12.988.816 different ones. It is easy to see that the system is in
fact of positive entropy. The exact value of the topological entropy was established
in the work of Kasteleyn, Temperley and Fischer (1961, see [Ba]). The analysis
actually reveals a lot of detail and in particular the following. Define the set of
configurations with horizontal period k and vertical period ! simply by

Py = {ac e XW.F) | otk0)y = 0D g — m} ;
One can show that

1
lim —

1,1
In |Pg | = }—/ f In (4 — 2 (cos 27t + cos 27tz)) dtdta.
k,l—o0 kl ' 4 0 0

As the configurations of period (k,[) are a subset of all configurations this provides
a lower bound for hi.p. But it can be shown that it is a representative one: the
number (= 0.2916) is exactly the topological entropy.

Example 4.10.: Let again S = {0,1}, take a 3 x 3 square window, fix &k, 0 <
k < 9 and let P, be the set of patterns with exactly £ 1’s in the window. All
the non-trivial subshifts X; = XW-P%) are non-empty (convince yourself of this).
In fact for & # 0,9 they are uncountable (you only need to check £ = 1,2,3 and
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4, why?). Using a frame-argument analogous to that in Example 4.7. one can
show that the topological entropy is zero for all of them. The systems are indeed
rather rigid. Constructing their configurations one discovers that they have tiling-
like qualities. This is due to a certain periodicity imposed by the rule. Moreover
closer examination reveals that they have the following property indicating extreme
rigidity or long range order: there are finite allowed configurations which can be
extended in uncountably many different ways to global configurations but which
can never be parts of the same configuration!

If the requirement “exactly & 1’s in the window” is relaxed to “at most £ 1’s
in the window” the resulting system has positive topological entropy and in many
cases resembles the Hard Core model. It is possible to think this model as a high
density packing limit of a Hard Core model. For further details on these models
and their relations we refer to e.g. [E4].

4.3. Why is 2 so different from 17

To really treat the Examples above and a few others properly would require another
set of lecture notes. So in conclusion we’ll instead be a bit philosophical and try to
indicate what is the root of the difficulties encountered in two dimensions.

Given a SOFT, one- or two-dimensional, here is a list of some very basic questions

one would like to settle.

1. Is the SOFT nonempty?

2a. Given a rational direction ps/p is there a point in X(W#) which is periodic to
that direction?

2b. Is there a rational direction such that the points periodic to that direction are
actually dense?

3a. Are there periodic points?

3b. If the answer to 3a. is affirmative are they dense?

4. Does a given finite configuration extend to a global one?

First we note that the answers to the questions appropriate in one dimension (1, 3
and 4) all follow from the matrix formulation. Recall that the defining matrix of a
SOFT gives us a directed graph representing the allowed transitions (z; — Ziy.1).
A global configuration is a bi-infinite path through this graph. But the graph is
finite (since the matrix is) so there must be closed loops in it. Transversing such a
loop gives a periodic point hence the SOFT is non-empty exactly when there are
periodic points. Similarly the finiteness of the graph enables us to check (in a finite
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number of steps} whether a given finite block can be generated from the graph and
if so we also know whether it can be extended to a global one. By the same vein we
also know if this extension can be periodic and hence the question on the density
of the periodic points is resolved.

Two dimensions (and higher) is different. But as in one dimension the questions
formulated above are closely related. This is indicated also in the following result
which was originally formulated and proved by Wang (1961) in tiling context.

Theorem 4.11.: Let W be a k x k window and XW-F} be a two-dimensional
topological Markov shift.

(i) It contains a point periodic to some direction ps/p, iff it contains a periodic
point.

(ii) If every non-empty XW-¥) contains a periodic point then the non-emptiness of
XW.P) s algorithmically decidable.

Proof: (i) The ”if ” is immediate. Without loss of generality we suppose that z is
fixed under some power p of o,. Consider the infinite vertical strip in z between (0, -}
and (p+k—2,-). By the horizontal periodicity the £ —1-blocks [Z(0,n), - - - » Z(k—2,n)]
and [a:(p,n), e ,x(p+k_2,n)] agree for all n. Then consider horizontal strips of height
k —1. As there is an infinite number of them on a finite alphabet two of them must
agree. So consider a finite window of width p+ & — 1 and height such that the top
k — 1 rows agree with the bottom k£ — 1 rows. This is a periodic tile which we can
use to tile the plane (with overlaps by strips of width & — 1}. Clearly the resulting
configuration is periodic to any rational direction.

For (ii) we assume that every non-empty X (W,P) contains a periodic point.
First check if any of the allowed patterns in P are both horizontally and vertically
periodic i.e. whether the left and right k£ — 1-columns agree and the top and bottom
k — 1 rows agree. If not, generate all allowed configurations of size (k+1) x (k+1).
Check for the same periodicities. Continue to larger sizes. At some point we will
either find a periodic square or the extension becomes impossible. The former
implies the existence of a periodic point hence X (W.P) is non-empty. Continuing
the extension indefinitely without encountering a periodic point contradicts the
hypothesis as the limit is in X (W>F), i

From this we see that the questions 1. and 3a. as well as 2a. and 3a. are intimately
connected. Similarly one can show that if every non-empty X (W.P) has a dense set
of periodic points then the extension problem 4. is algorithmically decidable.

However it turned out that Theorem 4.11. (ii) was not quite as useful as Wang
might have thought. Berger proved 1966 the following:
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Theorem 4.12.: There is a two-dimensional Markov shift without any periodic
points. Moreover the question 1. is undecidable in two dimensions.

Berger’s original formulation is in terms of tilings. Then the statement is that given
an arbitrary set of tiles the question whether they can be used to tile the plane
is undecidable. This is a rather deep result — its shortest proof still seems to be
a monograph... The idea has certain simplicity to it though. One shows that the
set of subshifts under consideration is big enough to have extremely complicated
elements. Specifically it has elements which if seen through a suitable coding are
Turing machines i.e. capable of universal computation. From yet earlier results it
is known that the halting problem for them is undecidable (i.e. given a universal
computer and an input will the execution on it halt in a finite number of steps).

The undecidability results outlined here certainly indicate a very definite difference
between one and two dimensions, 2 is not only twice as big as 1 — in some sense it
is much bigger and for that reason even collections like the set of SOFTs that are
quite innocent in one dimension are much less so in two dimensions.

But even if the questions 1-4 are resolved to a subclass of two-dimensional
SOFTs their analysis may still be complicated by things not encountered in one
dimension. The most basic ones stem from the fact that unlike in one dimension in
Z? there is a non-trivial neighborhood topology. This in turn is due to the fact that
in one dimension it is possible to define total order whereas in two or higher it is not
(for definition see [Rud]). Consequently things like counting the symbol variation
allowed in a neighborhood (key to topological entropy) can be highly non-trivial.

References. There is no standard reference to higher dimensional subshifts. Several
articles on them can be found e.g. in [Al]. In particular the one by Kitchens and Schmidt
is relevant as it analyzes a class (essentially extensions of the cellular automaton Rule
6 on binary doubles) for which the decidability problems are no obstacle. Parts of [Sc]
are useful in indicating the bigger picture in the algebraic context. The definite treatise
on the work (up to 1982) on related lattice models in statistical mechanics is [Ba). The
undecidability results mentioned appeared first in the tiling context and can be found in

a jewel of a bocok, [GS].
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Appendix 1

The Perron-Frobenius Theory

For the purposes of 1-d symbolic dynamics we outline here the main results of
the Perron-Frobenius theory. Some motivation and interpretation is given, but the
actual proofs which are standard linear algebra can be found in matrix analysis
treatises like [Ga] or in probability texts like [KT]. The presentation here follows
the latter.

Let A = (ai;) be a n x n matrix. If every element a;; is non-negative, we write
A > 0 and if additionally there is a positive element, we write A > 0 and call A
positive. If furthermore every element is positive one marks A > 0. For vectors
the notation is analogous: it is non-negative (z > 0) if all entries are non-negative,
if at least one entry is positive, then z > 0 and if all are, then = >> 0.

The First Perron-Frobenius Theorem: If A > 0 then

(i) there is x° 3> 0 such that Az° = Apz?,

(ii) for an eigenvalue A # Ao |A| < Ao,

(iii) Ao has geometric multiplicity 1 ie. the corresponding eigenspace is one-

dimensional

With some further work the result is recovered even under weaker condition A > 0
and A™ > 0 for some positive m. The latter part of this condition is equivalent to
our formulation “irreducible and aperiodic”.

To get some geometric intuition, it is useful to consider the matrix P = zy,
where Az = Aoz and yA = Aoy with the normalization z7y? = 1. So P is a matrix
of rank 1 and furthermore it is easy to check that it also has the properties

(i) Pz = (Ty") =, wP = (wz)y. In particular Pz = z and yP =y,
(i) P? = P,
(iii) AP = PA=AoP.

Theorem: If A > 0 and A™ > 0 then XIEA’“ — P
(4]



P is just the projection to the subspace spanned by the eigenvector associated
to the dominant eigenvalue Ag. So the Theorem says that high iterates of A look
essentially like the action of this projection (together with some scaling and rotation
if Ag # 1). The reason to this behavior and also the key part of the First Theorem
is the existence of a spectral gap, (ii). Even without that some of the theory can
be recovered in a weaker Cesaro form. This can be formulated as

The Second Perron-Frobenius Theorem: Let A > 0 and Ay be as in the First
Theorem. Then

(i} the eigenvector z° corresponding to A is positive,

(ii) for any other eigenvalue X it holds |A] < Ao,

(iif) =57 A converges if z° 3> 0,

0

i=1 N
(iv) if X is an Oeigenvaiue of A and |A| = Ao, then n = A/ Xy is a root of unity and
Ao, m=0,1,2,... is an eigenvalue of A.

Finally we note that in the context e.g. Markov transition matrices the theorems
both simplifv and are highly useful. These are stochastic matrices i.e. positive
matrices with row sums one. One can easily show that then always Ag = 1. But the
eigenvalue does not need to be simple and the matrix does not need to be irreducible
and aperiodic.
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Appendix 2

Endomorphisms on compact groups

Theorem A2. (Halmos): Suppose that G is a compact abelian group and A a
continuous map onto G. Then A is ergodic with respect to the Haar measure if and
only if the trivial character is the only h € G for which h (A™) = h for some finite
n > 0.

Recall that the Haar measure on a group is the uniform Bernoulli measure (the
different name refers to the fact that the measure is invariant under the group
action whereas the Bernoulli measure does not need any action to start with). The
Theorem gives a useful criteria for ergodicity in a special set-up: we only have to
verify that orbits from all A # 0 under the endomorphism are infinite. The proof
can be found in [Wa]. It is actually a relatively easy generalization of the argument
for the ergodicity of the irrational rotation of the circle.
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Some notation

A,B,C
O(z)
O
An(z)

Sp ()
PV P
H(P)

H(P|P')
h(T,P)

h(T)
k-name
B(p1.. .-, Pn)
(p, P)

Xa
Nper
Zm ()
P(i)
5152
$15(5)
NW(T}, w(z)
x (W,P)

ok

|A|
d(z,y)

o-algebra, partition, cover, pp.

Bi-infinite orbit of z under the given transformation, p.
Pointmass at z, p.

Average of an indicator function of a given set and

a given function ¢ along an orbit of length n from z, p.
Join of two partitions or covers, p.

Entropy of a partition and

conditional entropy of a partition, p.

Entropy of a transformation with respect to a partition and
entropy of a transformation, p.

k = (mg,...,mg_1) such that 7"z € P,,, 1 =0,...,k— 1, p.
Bernoulli-shift on n symbols, p.

Markov-shift with transition probability matrix P

and equilibrium state p, p

1-dimensional sequence space with adjacency matrix A, p.
Number of periodic orbits of length p, p.

Finite partition function for the given potential v, p.
Topological pressure of the potential v, p.

Configuration generated piecewise from subalphabets 5; without
and with boundary specification, p.

Non-wandering set of a transformation, w-limit set of z, p.
Multidimensional sequence space with the allowed patterns P
in the window A, p.

Multidimensional joint shift action, p.

Cardinality of the set A, p.

Metric on the sequence space, p.
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