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The bounded eight-vertex model�
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Abstract

The bounded version of the eight-vertex model of Statistical Mechanics is investigated. We
study square, diamond and general +nite domains on the square lattice and give exact characteri-
zations to legal boundary conditions and number of +ll-ins. The sets of legal con+gurations with
a given boundary turn out always to have the graph topology of a hypercube with a particularly
simple edge action. This enables a simple probabilistic description of the con+gurations as well
as an e-cient con+guration generation using a cellular automaton. Finally, by invoking height
functions we study restricted edge action which leads to ice-model as well as to lesser know
vertex models, some subsets of the eight-vertex model, some not.
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0. Introduction

The attempts in recent years to extend the one-dimensional theory of symbolic dy-
namics to higher dimensions have uncovered both challenging problems and yielded
surprising successes. On one hand, there are no-go results rooted to undecidability and
on the other hand completely new phenomena that manifest themselves only trivially
in one dimension. The former stem from the theory of tilings and in particular the fun-
damental work of Berger (see [7]), whereas the latter are closely related to classical
Statistical Mechanics formulations.
In this paper we consider a well-known Statistical Mechanics model, the planar

eight-vertex model. The in+nite model of immediate physical interest has been studied
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earlier in great detail [1]. Also the toral case has received attention but as it has no
boundary, none of the geometric subtleties associated with the boundary dependency
will show up there. Here we study this bounded case in +nite domains hoping that the
results on boundary dependency can help to clarify the phenomena of long distance
order in this and the embedded models like the ice-model (which was analyzed in the
companion work [6]).
While our model is of physical nature, the results can be viewed as a part of a

bigger program that attempts to bring unity to the theories of symbolic dynamics and
tilings. The original impetus to this work came mainly from a group theoretic study of
polyominoes [3,11] which was later extended by others, notably in [8]. These studies
concentrated on the tileability of a +nite planar region with given primitives, in these
cases dominoes or polyominoes.
It turns out that many Statistical Mechanics models can be treated in similar fashion.

Instead of tiling with polyominoes we can, for example, distribute arrows between
neighboring lattice sites according to a +xed set of local matching rules at vertices.
Models of this type include the ice-model, several color-models, the eight-vertex model
and still others, some of which appear for the +rst time in this paper. Through simple
coding these turn into tiling problems and again the shape of the domain can play a
critical role in determining the generic properties of the tilings.
Speci+cally, we consider the tileability and counting problems for the eight-vertex

model and indicate a simple but rather general way of generating all the allowed
con+gurations with cellular automaton. This is a consequence of a connectivity result
that seems to underlie many diCerent Statistical Mechanics models.
Our analysis also shows that independent of the domain shape the space of +nite

eight-vertex con+gurations has the particularly pleasing topology of a hypercube. The
+nal chapter analyzes the model using the concept of height. We give a natural expla-
nation why a non-trivial height function cannot exist for the eight-vertex model, but
it does exist for a number of interesting subsets thereby giving rise to ice and other
models with critical boundary dependency.

1. Setup and size

In this section we +rst de+ne the model and then analyze it on two diCerent types of
+nite domains. This involves characterizing legal boundaries, solving the +ll-in problem
and computing the size of the set of legal con+gurations.
Consider the square lattice in two dimensions, Z2. Unlike in most statistical me-

chanics lattice models the vertex models do not have any spin, etc. variables asso-
ciated to the lattice points. Instead the variables are now the arrows between four
nearest-neighbor sites.

De�nition 1.1. A vertex con+guration at a lattice site in Z2 is legal for the eight-
vertex rule if there are either 0, 2 or 4 incoming arrows and the rest are outgo-
ing. A con+guration is legal if it has an allowed vertex con+guration at every lattice
site.
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Fig. 1. Vertex con+gurations and prototiles with multiplicities.

Fig. 2. (a) Diamond and (b) square domains.

The allowed vertex con+gurations are illustrated in Fig. 1. The numbers indicate the
multiplicity of the arrangement. There are eight possibilities, hence the name of the
model. Alternatively, the bumps and dents in the prototiles encode the eight-vertex rule
thereby converting a legal con+guration into a tiling.
The model on the in+nite Z2-lattice as well as on a +nite torus has been studied

before (e.g. [1]). Both of these cases are boundaryless. In order to study the boundary
dependency we need to de+ne a suitable +nite domain and the arrow con+guration on
the boundary.
The domains that we will consider +rst are the diamond and square which diCer in

the orientation with respect to the lattice axes. The boundary arrows to be speci+ed are
obviously somewhat diCerent. We will +rst derive the counting result for the diamond
since it has the cleanest boundary condition of all domains.
N -diamond is a subset of Z2 of height=width of N lattice sites. The arrow con-

+guration on it has N − 2 arrows along each of the four diagonal sides. Fig. 2,
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left, illustrates a 10-diamond. We assume for simplicity that N¿2 is even. The to-
tal number of arrows in a N -diamond is N 2 − 4 and the number of lattice sites
N 2=2 + N . We omit the corner arrows as they are superGuous for the purpose of
+ll-in.
The boundary con0guration of the N -diamond, which consists of 4N−8 arrows along

the sides, is +xed. It can in principle be chosen arbitrarily but our +rst problem is to
solve when a given boundary con+guration can be extended to a complete con+guration
of the interior. To this end it is useful to partition the con+guration into shells as
indicated in Fig. 2 (the boundary is distinguished by bold arrows and the next smaller
shell by light arrows).
On a shell we distinguish two types of arrow pairs. If two neighboring arrows on

the shell point to or away from the common lattice point we say that they form a
switch block and call the lattice point a switch point. If one of the two neighboring
arrows on a shell points in and one out of the common lattice point we say that they
form a neutral block. Furthermore, if the switch point is on the inside of the shell we
call the block an inside switch block and outside otherwise. These are marked with
“I” and “O”in the +gure.
With these de+nitions we are ready to formulate a few basic observations:

(1) By the eight-vertex rule the existence of an inner switch block on a shell implies
the existence of an outer switch block at the next smaller shell. The switch blocks
share a common switch point. However, the inner switch block does not force the
type of the outer switch block: it can be both arrows in or both out.

(2) The total number of switch points on a shell must be even. Here we record switch
points in both inner and outer switch blocks. This is just a parity count—when
we traverse the shell the direction of the arrows changes at every time we cross a
switch point. Hence, when we arrive back to the initial arrow we must have seen
an even number of switch points.

(3) (1) and (2) immediately imply that if the boundary has an even (odd) number
of inner switch points, then all the inner shells must have an even (odd resp.)
number of switch points, inner and outer.

(4) The smallest shell (little square in the +gure) can +lled in iC the next larger shell
has an even number of inner switch blocks.

The 1ux across a loop around a lattice point is either 0 or ±4. Loop here is a
clockwise-oriented unit square in the dual lattice (Z+ 1

2)
2 centered at the lattice point.

A loop around a set of lattice points is a sum of such unit loops hence the Gux across
it has to be divisible by four.
Consider now the set of lattice points in the N -diamond with four arrows attached

(i.e. omit the extremal lattice sites in the N -diamond). De+ne the boundary Gux, F , to
be the Gux across the loop around this set. Facts (1)–(4) imply that the +ll-in shell by
shell from the boundary is successful iC on the boundary there is an even number of
inner switch points. Every switch point contributes ±2 to the boundary Gux. Neutral
blocks contribute 0. Hence, the +ll-in is possible iC F is divisible by four—the same
conclusion as in the previous paragraph. This Gux condition equals to the requirement
that there is an even number of arrows pointing in. Call a boundary arrow arrangement
that has such property a legal boundary.
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The boundary minus the four corner arrows is determined by its partition into in-
ner switch or neutral blocks. There are 2N − 4 of them in an N -diamond. Using an
elementary binomial identity we +nd that the total number of ways that the boundary
blocks can be chosen legally is

2N−4∑
k=0
k even

(
2N − 4
k

)
2k22N−4−k = 22N−5

2N−4∑
k=0

(
2N − 4
k

)
= 24N−9:

Let us now examine the +ll-in choices. For that purpose we number the shells from
outside in such a way that the boundary is the +rst shell, the next largest is the second
and so on. By the preceding argument the ith shell partitions into 2N−4i inner blocks,
switch or neutral.
The key fact that enables the counting is

(5) The locations of the inner switch blocks on a shell can be chosen independently of
the locations of inner switch blocks on other shells. Or equivalently the location
of inner switch blocks on a shell is independent of the location of outer switch
blocks on the shell.

The equivalence follows immediately from Fact 1 above. Note that the statement does
only refer to location and not to type.
Given the shell i− 1, the counting argument above slightly re+ned gives that the ith

shell can be chosen in

2
2N−4i∑
k=0;
k even

(
2N − 4i
k

)
= 22N−4i

diCerent ways. Factor 2 in front is due to the fact that besides the switch point locations
we can choose the direction of exactly one arrow on the shell.
By (5) the total number is then obtained by multiplying the shell contributions

2
(N=2)−1∏
i=2

22N−4i = 2N
2=2−3N+5;

where the 2 in front comes from choosing one arrow direction in the smallest shell
(the only choice there).
We can summarize the above as the +rst existence and counting result.

Theorem 1.2. An arrow con0guration on a diamond boundary can be extended to
an arrow con0guration on the entire set i4 F≡0 (mod 4). There are 24N−9 such
legal boundaries for an N -diamond. Each of these extends in 2(N

2=2)−3N+5 ways to a
complete arrow con0guration of the interior. The total number of N -diamond con0g-
urations is 2(N

2=2)+N−4.

We will postpone interpreting this until we have analyzed the square domain case as
well.
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The N -square is the domain that consists of N 2 lattice points and 2N 2 + 2N ar-
rows as indicated in Fig. 2b (a 8-square). The 4N arrows that have been rendered
bold have to be speci+ed as a boundary condition. For simplicity let N again be
even.
It is again useful to distinguish a shell. In Fig. 2b the +rst shell is the one marked

with light arrows. The smallest shell (the (N=2)th, here unoriented) is shown as well.
The reason for this shell choice is evident; given the boundary arrows, once we choose
the arrows on the neighboring shell a new inner boundary is uniquely determined
(the unoriented arrows on the inside of the +rst shell in the +gure) and we can pro-
ceed inductively. As in the diamond case, in the square case, the total Gux along
the arrows on the boundary, has to be divisible by four. Hence, there are total of∑4N

k=0; k even(
4N
k )=24N−1 legal boundary conditions.

Compatible with Fact 2 in the diamond context we must record an even number
of arrow direction reversals on the shell as we traverse it once. Call the lattice points
where this happens again switch points. The location and number of corner switch
points we cannot choose as they are determined by the next larger shell. But others on
the shell we can among the 4(N−2i) possible locations on the ith shell. Depending on
whether there is an even or odd number of corner switch points we have to pick even
or odd number of oC-corner switch points on each shell. But in either case there are
the total of 24(N−2i); 16i6N=2− 1 choices. Here we have also accounted the choice
of one arrow orientation after which the shell is completely determined. For i=N=2
(the center shell) there are two choices as in the diamond case.
The shells were chosen the given way to have the independence of the choices as

in the diamond case. Now the locations (hence also the count) of the oC-corner switch
points on neighboring shells are independent. Therefore, we can compute the totality
of choices as

2
(N=2)−1∏
i=1

24(N−2i) = 2(N−1)2 :

Theorem 1.3. An arrow con0guration on a square boundary can be extended to an
arrow con0guration on the entire set i4 F≡0 (mod 4). There are 24N−1 such legal
boundaries for an N -square. Each of these extends in 2N

2−2N+1 ways to a complete
arrow con0guration of the interior. The total number of N -square con0gurations is
2N (N+2).

Remarks. (1) Although the geometry of the domain forces a somewhat diCerent ar-
gument in the two cases it does not alter the number of choices in a signi+cant way.
One notes that the square domain has approximately twice as many lattice points and
arrows but essentially the same number of boundary arrows. In particular, the asymp-
totics like topological entropy agree. This quantity for a vertex model is the maximal
“uncertainty per arrow”. More formally it is

htop = lim
M→∞

1
M

log({total number of M − arrow con+gurations});
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where the domain of size M will retain its shape as its size increases (to avoid es-
sentially one-dimensional limiting shape). The theorems imply immediately the lower
bound 1

2 log 2 for the topological entropy of the in+nite model. In fact, the bound is the
exact value since we are imposing no boundary condition in the last statements of the
theorems. This number is approximately 0.346574. For comparisons sake we mention
that for the in+nite free model htop= log 2≈0:69315 and for the (more restrictive) six-
vertex model htop= 3

4 log
4
3 ≈0:215761.

(2) These results indicates a striking homogeneity in the model: all legal boundary
conditions in the given geometry have equal number of +ll-ins. It reminds of the
situation to the one encountered in +nite groups, the +ll-ins corresponding to the cosets
of a group. Later we will see what the action generating each coset is.
(3) The results extend immediately to a rectangle standing on its corner and a lattice

rectangle.

2. Irreducibility

In this section we investigate the “perturbations” of the allowed con+gurations. This
yields a simple characterization of the topological structure of the set of con+gurations.
From it we obtain a constructive method to generate the con+gurations and to analyze
their probabilistic properties.
The +rst observation is that for each of the eight-vertex con+gurations we can si-

multaneously reverse the directions of two arrows and the vertex con+guration remains
legal. This Gip at just a single-vertex con+guration violates the rule at two of its nearest
neighbors. But if we reverse the arrows along any closed arrow loop—thereby forming
a disagreement loop—in the resulting con+guration all vertex con+gurations are again
legal. Note that while this loop=path consists of arrows it does not need to be directed
as a whole.

De�nition 2.1. A 1-loop is the quadruple consisting of arrows connecting four neigh-
boring lattice sites in square formation. The reversal of all the arrows in such a loop
is an elementary move.

We immediately note the useful property that elementary moves commute. Subse-
quently, the symbol for an elementary move refers to the coordinates of the dual lattice
site where it is performed.
Reversal of 1-loops connects some set of con+gurations. The natural question then

is to characterize this set, i.e. the con+gurations that can by constructed from a given
con+guration using a +nite sequence of elementary moves. Note that in the case of
a bounded domain with a +xed boundary, a loop reversal can never produce a con-
+guration in the other cosets as the path to be reversed cannot contain any boundary
arrows.
Call the action of 1-loop reversals irreducible on a set of con+gurations, C, if any two

elements of C can be transformed to each other with a +nite sequence of elementary
moves.
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Fig. 3. The sweep.

The domains on which we show the irreducibility are more general than those in
Section 1. Call the connected boundary segment on the diamond edge a staircase and
call a column=row of parallel arrows, as on the square boundary, a ladder. The boundary
of a legal domain consists of arbitrary +nite segments of staircases and ladders. We
assume that they are enclosing a +nite set of lattice point which is simply connected
(no oC-boundary loop encloses boundary arrows).
Let Dfree denote the union of unit squares in the domain with arrows on its edges,

none of which is a boundary arrow. A (Dfree), the area of Dfree, is a +nite integer,
the area of the interior of the domain. Fig. 3 illustrates a legal domain. The small gray
squares denote those unit squares in the domain which are not free.

Theorem 2.2. Elementary moves are irreducible on any set of con0gurations on a
legal domain and with a common boundary con0guration. They connect the 2A(Dfree)

distinct con0gurations on the domain.

Proof. Consider two legal arrow covers of the domain D with same arrow con+guration
on the boundary. Call these con+gurations x and y.
For simplicity we +rst identify all the disagreements on the two con+gurations. It

is easy to see that they are all on disagreement loops. The loops are obviously oC-
boundary and they can be chosen to be disjoint (possibly sharing a vertex but not
an edge). The loops can be nested but we ignore all except the maximal ones which
enclose the smaller loops inside them. Note that there are no boundary arrows on the
maximal disagreement loops or in their interior because of the simply connectedness.
So all 1-loops in this maximal disagreement set can be reversed.
Call the sections of the con+guration-oriented SW-NE diagonals. We compare the

two con+gurations lexicographically, diagonal by diagonal, and change y locally if
needed, and at the end of the comparison x and the image of y will be identical.
Starting on line L1 (see Fig. 3) at the NW extremity of the domain we record from

the left to the right the agreements on the 1-loops centered on it if they are within
the maximal disagreement set. To be precise we only check the arrows on the W-edge
of each of the 1-loops (in x and y) at the same dual lattice point on the line. If no
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disagreement is found the arrows on both W- and N-edges of the 1-loops agree in
the two con+gurations and we parallel transport the line to it’s next location, one unit
down.
Suppose there is a +rst disagreement in a 1-loop on L2 at the site illustrated in the

+gure. Then in fact both arrows a and b disagree. This is because the two arrows
in the same vertex con+guration on the previous diagonal have already been found
to agree on the two con+gurations. Now apply an elementary move to the quadruple
(a; b; c; d) in the con+guration y. After this the N and W arrows agree at this 1-loop
in both con+gurations. We continue to the next 1-loop on the diagonal as long as it is
within the maximal disagreement set. Clearly, the process can be continued to the end
of the last diagonal intersecting the maximal disagreement set, after which x and the
image of y agree.
Since one sweep across the con+guration su-ces to connect, the argument above

implies that the domain D with the given boundary con+guration has at most 2A(Dfree)

distinct arrow covers compatible with the eight-vertex rule. Suppose there are less.
Then there are distinct sequences of elementary moves {pi}ni=1 and {ri}mi=1 (coordinates
of the sites where an elementary move is performed) such that pn · · ·p1x=rm · · · r1x.
Since an elementary move is a involution this implies x=pn′ · · ·p1rm′ · · · r1x, for some
n′6n; m′6m, where we have by commutativity canceled all elementary moves per-
formed at the same sites. By assumption pn′ · · ·p1rm′ · · · r1 cannot be an identity.
Hence, the equation fails for all x and we conclude the cardinality in the statement.

Corollary 2.3. The action of the elementary moves is irreducible on the set of di-
amond or square con0gurations with identical boundary arrows. Maximum number
of elementary moves needed for a N -diamond is N 2=2 − 3N + 5; N¿4 and for a
N -square it is (N − 1)2; N¿2.

Proof. There are restricted 1-loops along the boundaries in the diamond case. Once
we remove them there are (N=2− 1)2 + (N=2− 2)2=N 2=2− 3N + 5 free 1-loops left
in the con+guration on a N -diamond. The N -square consists of (N − 1)2 1-loops, all
free.

Corollary 2.4. The set of con0gurations is a hypercube in A(Dfree) dimensions the
elementary moves being the coordinate shifts.

Proof. By the theorem the set of con+gurations on D with a given boundary is a
connected graph with 2A(Dfree) nodes. There are no self loops and each node has exactly
A(Dfree) nearest neighbor con+gurations reached with a single elementary move.

Remarks. (1) The tileability condition F≡0 (mod 4) holds for general domain as well.
However, counting the exact number of legal boundary conditions without speci+c
knowledge of the domain geometry seems complicated.
(2) Note that the graph diameter results in Corollary 2.3 necessarily have to agree

with the coset size exponents formulated in Theorems 1.2 and 1.3. The reason why we
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present the theorems of Section 1 as well as Theorem 2.2 is that their proofs illustrate
the independence embedded in the model in quite diCerent ways. The argument given
for Theorem 2.2 is more robust though. It applies to various domain shapes while the
shell construction in the proofs of Section 1 becomes rather unwieldy for complicated
domain shapes.
(3) This type of connectivity result seems to hold with some generality once the

correct elementary moves have been identi+ed. It has been shown to the ice model
[6,9], to dominoes in greater generality [10], to lozenge tilings, etc. Sometimes it almost
holds, failing in an interesting way for a small subset of “exotic” con+gurations [5].

The topological +ndings above immediately imply a simple characterization to a
generic con+guration. Fix a legal domain D and a legal boundary condition for it.
Let the interior, Dfree, be de+ned as above. Pick an arrow site which is an edge
of one of the unit squares in Dfree. Partition the set of legal con+gurations, C, into
subsets C+ and C− according to whether the arrow at the selected site points up or
down (to the right or left if horizontal). Since an elementary move is a 1–1 map
and Gips the test arrow in a 1-loop in Dfree containing it, we conclude |C+|= |C−|.
Hence, if the con+gurations are equally weighted the probability of seeing a partic-
ular arrow orientation at any site in the interior of the domain is exactly 1

2 . This
homogeneity of the con+gurations, i.e. lack of long-range dependency from the bound-
ary con+guration is distinctly diCerent from the phenomena observed in, e.g. the ice
model [6].
The con+gurations are easy to generate. Denote the set of con+gurations understood

as a A (Dfree)-dimensional hypercube by H . Let Xn be a nearest-neighbor random walk
on H with independent jumps and uniform transition probabilities. Hence, the jump to
each of the neighboring con+gurations has the probability I=A (Dfree). The equilibrium
distribution is then of course uniform, i.e. each con+guration has probability 2−A(Dfree).
Starting from any legal con+guration the walk converges exponentially fast to the
uniform distribution on H . The implementation of this walk as a probabilistic cellular
automaton is straightforward. For explicit details we refer to the companion paper [6]
(and [4] for a computationally e-cient deterministic scheme that can be applied to the
case at hand as well).

3. Height

A height function is an analytic device frequently useful in the context of lattice
models. Roughly speaking it is a function de+ned on the con+gurations which keeps
track of certain regularities in the con+gurations. The name follows from the interpreta-
tion of the graph of this function lying as a surface above the con+guration. They have
been shown to exist, e.g. for dominoes (for a nice treatment of this context see [11])
and for the ice-model [2,6]. The eight-vertex model does not have a height function but
understanding why this is the case leads to further understanding of the homogeneity
of the con+gurations as well as to studying certain interesting subsets of them via the
set of elementary moves.
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Fig. 4. Height and weight.

Since we will consider brieGy also other vertex rules than the one for eight-vertex
model, we state the de+ning properties for height more generally. By vertex model we
mean a model on the given lattice where specifying the vertex con+gurations of arrows
at every lattice point de+nes the con+guration uniquely. Denote the set of con+gurations
again by C.

De�nition 3.1. Height function h for a vertex model on Z2 is an integer-valued function
on C×(Z+ 1

2)
2. The value of h(x; ·); x∈C changes by ±1 from a dual lattice point to

its neighbor, the sign depending on the heading (left=right) of the con+guration arrow
crossed.

Remarks. (1) The function is uniquely de+ned up to an additive constant, which is
+xed by de+ning the value of h at one point.
(2) To have a well de+ned function h, the value that it returns at the end of a closed

loop has to agree with the initial value. Or equivalently the value of h at a given dual
lattice site is independent of the path along which it is computed from the base point
(where the value is known).

Using the results of Section 2 it is now easy to see that the eight-vertex model does
not admit a non-trivial height function (a trivial height function computes height only
mod 2). Consider the arrangement in Fig. 4a. (lattice lines are bold, dual lattice lines
light, a; : : : ; d denote dual lattice sites).
Suppose for simplicity that h(x; a)=0. The height h(x; c) can be computed, e.g.

along the two shortest paths that pass through b and d, respectively.
Consider now the path through b. The height h(x; c) depends on the orientations of

the two arrows along the western and northern edges of the bold square. If we now
perform an elementary move on this square these arrows are reversed and the height
at c will be h(x′; c)= − h(x; c) (x′ is the con+guration after the move). But along the
path via d the arrows are unchanged so necessarily h(x; c)=h(x′; c)=0.
The only choice in the de+nition of the height function is on the weights we assign

on the arrow orientations (whether an arrow pointing to the right of the height path
counts +1 or −1). Suppose that the two arrows reversed were attached to each other
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Fig. 5. Embedded vertex rules.

head–tail. Then we must read them for the height with same weight in order to obtain
the value 0 at c. But if they were pointing head–head or tail–tail then necessarily
h(x; c) �=h(x′; c), a contradiction.

The argument above can be loosely summed by saying that the reason why the
eight-vertex model does not have a height function is because the set of elementary
moves is too big. This in turn suggests some questions: Are there more restricted
subsets of this set of moves which generate interesting (say in the sense of height)
sets of con+gurations? Can the eight-vertex model perhaps be generated with a subset
of the elementary moves? What kind of height functions are possible? These are the
questions that we concentrate on now.
The leftmost column in Fig. 5 decomposes the set of elementary moves as stated

in De+nition 2.1 into its primitives, reversals of eight distinct arrow loops. The top
row indicates all the possible vertex con+gurations on the square lattice with 0, 2 or
4 incoming arrows and the middle those with 1 or 3 incoming arrows. The entries in
the matrix denote the vertex con+gurations legal in the con+gurations on which the
primitive move represented on the left acts. We are not going to analyze every model
(i.e. row) in the table but rather give the principles according to which it can be done
and the entries in the matrix decided. These are indeed quite simple:
(1) Choose one of the primitive moves on the left.
(2) Determine the height function from the primitive move. This is equivalent to de-

ciding how the ±1 weights are assigned to the arrows in the four diCerent ori-
entations as the height is computed along a dual lattice path. Once this has been
accomplished the height is well de+ned (path independent) for the “perturbed”
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con+guration if it was for the original one. Everyone of the primitive moves listed
admits a height function on the con+gurations compatible with the moves.

(3) Using the height single out the legal vertex con+gurations using the fact that height
diCerence around a closed loop must vanish.

Let us illustrate this procedure in a couple of cases. In order to remove the ambiguity
in the choice of the height we choose the sign convention as indicated in Fig. 4b. The
lattice arrow is again bold and the dual lattice path along which the height is computed
is light. The arrangements and their rotations indicate how the height changes when
the arrow crossing is recorded with positive weight.

Example 3.2. Suppose we have chosen the primitive action to be the reversal of di-
rected 1-loops as on the top of the column on the left in Fig. 5. Consider now the
arrangement as in Fig. 4a where the bold arrows form a directed 1-loop. To have
h(x′; c)=h(x; c)=h(x; a)=0 we need to record one +1 and one −1 along the height
path a→ b→ c. But since there is indeed one left going and one right going arrow on
the path zero will result if we record as indicated in Fig. 4b. Same obviously holds for
the three rotations of the arrangement in Fig. 4a. Hence, the height is simply computed
from increments as in Fig. 4b, i.e. weights are all +1 (or all −1).

Height increase around a closed loop must be zero. Using the height increments
of Fig. 4b around a 1-loop in the dual lattice immediately singles out the vertex
con+gurations marked with crosses in Fig. 5, +rst row in the matrix.
The reader may recognize this vertex model. It is the classical six-vertex or ice-model

of Statistical Mechanics [1]. In [6] it is shown that the given primitive action connects
all the con+gurations (made from the six legal-vertex con+gurations) exactly in the
same sense as elementary moves connect the eight-vertex con+gurations in Theorem
2.2. (the geometry of the domain is more restricted in [6] though).

Example 3.3. Consider the primitive move on the +rst row of the bottom half in
Fig. 5. Arguing as in the previous example on the path independence of the height in
Fig. 4a now gives a diCerent conclusion. The height is consistent with the primitive
move if and only if the increments of Fig. 4b (these arrangements and their rotations)
are weighted as in Fig. 4c (these weights or all signs reversed). Using this weighted
height to test the vertex con+gurations results in the entries on the top row of the
bottom half of the table.

The weights de+ning the height function are all +1 or all −1 for the directed 1-loop
reversal (i.e. ice-model of Example 3.2.) and non-trivial and distinct for the heights of
all the other seven primitive moves in Fig. 5. Note that this implies that one cannot
de+ne a height function for the eight-vertex model even if we restrict to a subset of
the set of elementary moves (recall from the beginning of the section that the reason
height did not exist was that the set of elementary moves was too large). For example
the two primitive moves in the +rst two lines of the matrix admit together all the
eight-vertex con+gurations; yet, neither of the two height functions is well de+ned on
all the vertex con+gurations, i.e. neither extends to the “full” model. Whether a strict
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subset of the elementary moves actually generates the eight-vertex con+gurations on a
legal +nite domain (in the sense of Theorem 2.2.) is an open problem.
By de+nition height h(x; a) is a Lipschitz-function in a for all con+gurations x.

Whenever its discrete partial derivatives in a are constant ±1 in some neighborhood
of a the con+guration is ordered there in some fashion. Conversely, one could think of
disordered con+gurations to be those whose average (in a) height increments are near
zero.
Study of the ice-model using height indicates that the domain geometry and the

boundary con+guration can inGuence the interior of a con+guration in a drastic fashion
[6]. Constant height derivative on a boundary segment forces the vertex con+guration
on a wedge in the interior of the domain. The models listed in Fig. 5 all share this
property. This is because their con+gurations can be mapped 1–1 to ice con+gurations
once the height function is known. So in conclusion we note that although the eight-
vertex model has neither a height function nor long-range boundary dependency, its
con+guration set has naturally de+ned subsets with these properties.
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