Ergod. Th. & Dynam. Sys. (1991), 11, 309-331
Printed in Great Britain

Alpha-congruence for dispersive billiards

KARI ELORANTATY
Institute of Mathematics, Helsinki University of Technology, 02150 Espoo, Finland

(Received 1 June 1989 and revised 30 April 1990)

Abstract. We show the stability in the sense of a-congruence of dispersive (Sinai)
planar billiards that are Bernoulli flows. The perturbations are either billiards on
slightly altered tables or geodesic flows on nearby manifolds.

0. Introduction

In this paper we establish perturbation results for certain billiard systems. In the
first part we will show that for a large class of dispersive plane billiards the measure
theoretic entropy of the flow in the phase space is continuous under smooth
perturbation of the curved boundaries of the billiard table. We then extend this to
a new type of stability which is called a-congruence and discuss its qualitative
features as well as generalizations of the result. This concept was introduced by
Ornstein and Weiss in [OW]. Intuitively the notion is as follows: two dynamical
systems are a-congruent if they are measure theoretically isomorphic and the
isomorphism moves all but & of the state space by less than a. The formulation is
useful since it enables one to unify the stability analysis of diverse dynamical systems
of both deterministic and stochastic origin (as indicated in [OW] and [El]).

In the second part (§§ 5-7) we investigate a class of perturbations of a dispersive
billiard originally proposed by V. 1. Arnold. Here the perturbation is a geodesic
flow on a surface of non-positive curvature and we again show the convergence of
entropies as well as a-congruence of the original system and the perturbation.
Comparisons to structural stability and variations of it are made.

1. The billiard flow

Let Q be a bounded and connected plane domain which we call the billiard table.
We shall assume that the boundary of Q consists of a finite number of C* curves
{9Q;} which interesect each other transversally and only at their endpoints. Con-
sequently for every g € 9Q we have a unit interior normal vector n(q) except if g
is a point of intersection.

Definition 1.1. By a billiard in Q we mean a dynamical system generated by a
uniform linear motion of a point-mass within the domain Q, assumed to be reflected
by the boundary of the domain according to the law ‘angle of incidence equals
angle of reflection’. By dispersive billiard we mean a billiard on a domain Q with
non-positive geodesic curvature at every point on §Q where n(g) exists and negative
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curvature somewhere on dQ. Hence the left and right limits of the curvature exlst
everywhere on the boundary. We denote the curved boundary (the scatterer) by 0.

For any g€ Q let Q(g) be the set of directions at g that point into Q. The phase
space M of the billiard is the skew product of Q with Q(-). This set consists of all
the possible positions and directions of motion that the particle can have. It is a
compact three-dimensional manifold with boundary and a subset of the unit tangent
bundle SQ. By 7 we denote the natural projection frorn M onto Q. We denote the
components of dM by M, = 7 '(3Q;) and define oM =7 '(6Q). Metrize M by the
Euclidean metric and denote this metric by D.

On aM; we have natural coordinates (r, ¢) where r is the arclength and ¢ is the
angle measured counterclockwise from n(q(r)), ¢ €[-7/2, a/2]. Let

G ={xeaM|(x, n(w(x)))>0},

B,={xecaM|{x, n(w(x)))=0} and

B,={xcaM|m(x)eaQ,naQ, some i, j, i #j}.
The set B= B, U B, is called the set of singular points.

Let u be the Lebesque measure on M and denote the one-parameter group of
shifts along orbits of the billiard by {S, |teR}. S, preserves p hence the dynamical
system(M, B(M), S,, ) is a flow. Let M ={x € M|Sx € B for some t€R}. It can
be shown that u(Mpz)=0.

Let #(x)=inf{t>0|Sx¢e GnaM}. A billiard is said to have finite horizon if
37> 0 such that Yx e M7(x)=7. Also define the minimum distance between two
scatterers by letting 7 =inf,.; d (aé,., aéj). Typical dispersive billiard tables that also
have a finite horizon are illustrated in figure 1.

(a) (b)

FIGURE 1

We now define a class of billiards that will be of main interest in the first half of
this paper.
Definition 1.2. A canonical billiard table (c.b.t.) is a rectangle, possibly with dispersive
but mutually disjoint outer boundary components and a finite number of disjoint
convex obstacles in the interior. All boundaries are reflecting and the geometry is
such that the billiard flow has finite horizon. Curvature of the dispersive pieces is
strictly negative everywhere even in one-sided limits at the endpoints. Finally all
inside angles between boundary components are right.

A simple example of a c.b.t. is given in figure 1(b). Note that this definition
implies 0 < 7 <7< 0. Certain generalizations beyond c.b.t. are discussed at the end
of § 3.
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1.3. From a billiard on a c.b.t. a toral billiard can be constructed through reflection
argument as indicated in [S1]. There it was also shown that the mixing properties
and entropy of the original and toral system are identical. The same trick enables
us to extend all our results for billiards on canonical tables to corresponding toral
billiards. Finally we note that although c.b.t. is semidispersive the toral extension
is dispersive i.e. the curvature is negative at every boundary point.

2. Ergodic properties, Lyapunov exponents and the entropy Sformula

In this section we briefly describe the ergodic properties of dispersive billiards. In
particular we elaborate on the fibre curvature and show the formula for the entropy
of the flow. We only discuss details if they are pertinent to later sections and no
proofs are included. They can be found in the main reference or in the ones given.

2.1. Let T be the derived automorphism of the billiard flow i.e. the restriction of S,
into M. Let xe U <aM, U an open neighborhood.. By a locally contracting trans-
versal fibre (1.c.t.f.) of x we mean a curve in U consisting of points y such that
d(T'x, T'y)>0 as i->co. Theorems 3.1 and 4.1 in [S1] together imply that for
v-almost all x,€ G there exists a C' curve y through x, belonging to the Letf. of
Xo, given by an equation ¢ = ¢(r):

49 _ ©(x(r, $)) cos ¢.
dr

Here x(© is the curvature of fibre. The length of y between break points is bounded
from below by a positive function C(x). Moreover by taking x; = T'xy, i€N, x0€ G
we construct Lc.t.f. ) containing x; as above. Then define by I'“(x,) =\, Ty
the complete contracting transversal fibre for T at x,. By using an analogous definition
of Le.t.f. for S, a similar construction can be performed yielding the l.c.t.f. through
any x € M and its global counterpart. The complete contracting transversal fibre for
S, is a piecewise differentiable curve in M its singularities being caused by corners
of the table or tangential intersections of the trajectory with 3Q. The contracting
transversal fibre has a natural counterpart, the expanding transversal fibre T’ it
They are preserved by the flow ie. I’ )(Sx)= 8T (x). The fibre structures
{TO(x)}cen are called the transversal fields of S, (T similarly).

For u-almost every x € M the contraction rate along I“(x) is given by x‘“(x).
Its explicit form is

—k'(x) = 1 1
T+
. 2alx) + l (2.1)
cos ¢,(x) ot 1
: _ 2k,(x) fes
cos ¢o(x) -,

where the 7,’s are time intervals between two consecutive reflections of the trajectory
of x from the scatterer. k;(x)<0 is the curvature of the boundary and ¢;€
[—m/2, w/2] the angle of incidence of the ith point of reflection from the scatterer.
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Let «,(x) denote the ith convergent of —k‘”(c). From this point on we use the
convention k(x) = —«‘“’(x). The formula is presented in [S1] using slightly different
notation. It follows from considering the two basic mechanisms in the billiard flow.
If k, and k, are the curvatures of a section of a raybundle in the beginning and at
time ¢ and no reflections have taken place in between we have the focusing relation:

1 1
—_—=—t .
ok t. (2.2)

If k_ and k, denote the curvatures immediately before and after a reflection then

we have the dispersion relation:

2k

s (2.3)

ki=k_+

Applying these to the evolution of a section y< M of an infinitesimal ray bundle
on Q (the fibre through x) yields the formula (2.1). Let 7(y)<dQ;, some i and let
v be given by ¢ = ¢(r). If after m reflections from the scatterer S,y has zero curvature
then the required initial curvature of vy is given by

d

28 = kan(x) c0s 6(1).
v is assumed to reflect from one boundary piece at a time and not to have tangential
rays. To obtain the curvature of the asymptotically parallel ray bundle we let m > co.
The convergence of (2.1) is trivial since the necessary and sufficient condition

it 2k(x) _
lgl (Ti _005 ¢n(x)) -

is clealy true by ¥, 7,=00. « is continuous except when the trajectory is tangential
to the boundary or intersects dQ; N 9Q; for some i, j.

2.2. The fact that the billiards under consideration are K-flows is shown in [S1]
and [BS). Note that the extra hypothesis of finiteness of the horizon is needed
already for ergodicity as shown in [Ke]. In the perturbation result of Section 3 this
assumption is not utilized. The Bernoulliness of the flow was proved in [GO] and
also follows from the positivity of the Lyapunov exponents [W]. The Bernoulliness
will be essential later in a-congruence considerations.

In particular the Ergodic Theorem is applicable to S,. Since u is preserved we
know that the Lyapunov exponents which as invariant functions are almost
everywhere constant satisfy A, +A_=0 p-a.e. The average expansion rate along a
generic orbit, A, therefore satisfies for u-a.e. xe M:

l !

Ap=lim- I k(Sx) ds = J. k(x) du(x) (2.4)
t=co | 0 M

ifk € L'(M). The integrability will be verified in Lemma 3.4. Finally by the extension

of the Pesin theory to systems with singularities in [KS] which also covers our

billiards we know that the measure theoretic entropy of S, equals to A..
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3. The boundary perturbation theorem

In this section we first state the boundary perturbation result for a canonical
dispersive billiard. Our aim is not to find the largest possible subclass of dispersive
billiards for which the result is true but rather present methods of proof that can
be applied to a large class of tables. The proof that follows is divided into a number
of preliminary lemmas. At the end generalizations are briefly discussed.

3.1. Suppose that the dispersive boundary pieces of a c.b.t. are parametrized by
arclength r: 6(3={(x,(r), x,(r))|re I=\U I} where I; are disjoint intervals of R.
Let x, be C? functions and d® denote the metric defined by the C®-norm on this
space. The space is complete and separable under this metric since {C, sup} is.

If a function of a billiard flow is continuous under d”-small perturbations of
aé we call it c.u.p. The main result of this section is:

THeOREM 3.2. The entropy of the billiard flow on a canonical billiard table is continuous
under d®-small C*-perturbations of 3Q that are canonical tables.

Notice that requiring perturbations to be c.b.t. separately only amounts to requiring
the correct corner angles and finiteness of the horizon. The proof of the theorem
uses certain machinery that helps us to deal with the function x. We present that
in the form of a few lemmas. The first one establishes a lower bound for the
convergence rate of «,,.

LEMMA 3.3. Given « and «; as in formula (2.1) we have for all x € My

1
k(X)—Kkom(X)| ==
()= (D = 5
Proof. For the general convergent
P, _ 1
Q" b+—11_
b+
. 5 1
b

n

it is known (see e.g. [Kh]) that Q, = b,Q,-1+ Qu—2, Q-, =0, Qo=1. Let P,/ Q, = K,
then Q,=1and Q, = 7,. Weclaim that Q,,,_, = P, +1and Q;,,-, = P>+ (ry+- - +71,)
imply Q. =Py+1 and Q4 = Py+(7+- *+17,4,), where P’s are some positive
numbers. But this is obvious since

K

=— >0 and by =Tpu+1>0
COS ¢,

2m
so induction is complete. Therefore

Qmaz=Y 7 and Q;n=1 VmeN.

i=1
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It also holds that ([Kh])

PPy 1

QGD Qu Qn—lQn

when b;’s are positive, hence the result follows with n=2m. O

Remark. This can also be proved by using the Gauss-Bonnet Theorem as in the
derivation of the Riccati equation in the geodesic flow case.

Define the 8-interiors of the table and phase space as

s ={geQ|d(q,0Q)>8} and M,;=Q;xS"

=

for some 6 > 0.

LEMMA 3.4. k€ L'(M) and

I k(x) du(x) = O(8).
M\ M;

Proof. We will first prove the formula since it immediately implies the integrability.
Since aé is C?, k(q) is piecewise continuous on the scatterer and is therefore
bounded. Let ge Q\Q; and suppose that aQAi is the nearest component of the
scatterer to g. Moreover let C,< S "be the largest such ‘cone’ that x € {q} X C, implies
that S;x eaéj, j#i (i.e. the ray does not hit the nearest wall first).
First note that for all x € (Q\ Q;) X C, by the fact that the raybundle can not focus
before next reflection from the scatterer we get that x(x) <1/(r—8). Hence

I k(x) du(x)= O(8).
(Q\Q5)xCy

To deal with the complement of the cone we use the dispersing relation (2.3). It
implies for the incoming raybundle k_<1/7—2k/cos ¢ and if «(x) is the curvature
of the raybundle between two reflections we have the same bound for this. But then
since du = C cos ¢ dq d¢ the singularity is integrable and

J k(x) du(x)= O(98).
(Q\Qs)xC§

For the integrability we notice that if x € M; then x(x)=1/6 and
1
j k(x) dp,(x)=I +J k(x) du(x)==+0(8)<co. O
M Mg M\M; 4

3.5. Next we introduce the notation for the rest of the proof. Given T>0 let
MJi={xeM|S,xe B forsome r€[0, T]}
(ME)* is open and u(M})=0. Given x& M;n(Mp)* let

T n(x)> T}.

i=1

m(x, T)=min {meN

oma
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Notice that m(x, T) < T/7+1, ¥x € M. Denote the reflection points by {g:(x)}. Call
a boundary point 8'-good if its distance along dQ to the nearest corner point is at
least &'. Define the 8'-T-tube of x as

Py r(x)={ye Q|d(y, m(S,x))<8" forsome re[0, T]}.

The set Py r(x) is gracing if d(7 (S, x),GQ()<8' for some 7€[0, T], some i and
the previous and next (with respect to S. x)q,(x)ean, k# 1

Let M+ be a collection of x€ M; A (Mp)° such that |¢,(x)|<(1-8")m/2Vi=
1,..., m(x, T) and that P, r(x) is non-gracing and all the boundary points (O3 Tl -T)

are 8’-good. Finally let o(q) denote the direction of the invard normal at g€4Q.

LEMMA 3.6. Kom(x) is c.u.p. for all meN and xe M r.

Proof. Denote the perturbed boundary by aé and the points of reflection on it by
g = gi(x). Clearly if d?(Q,3Q)~0 we have |g,—§;| >0 and |o(g;) - a(g)|~>0
Vi=1,...,m(x, t) for a given xe M35, Equlvalently for any 5e(0,8'), 38" such
that if d‘”(aé dQ)< 8" then we have S.xe P;r V7e[0, T]. Consequently
d?(3Q, 3Q)~ 0 implies 7~ 7, and b=, i=1,...,m(x,T).

If (x(t), y(t)), te I is a parametric representatlon of a dispersive curve aQ,, its
curvature is given by

L

|x'y"—x"y'l
[(x")*+ ()T
which is clearly c.u.p. Therefore d®50,5Q)~0 implies |k(§,)—k(g)|~>0 Vi=
1,...,m(x, T). Hence 7,, ¢; and k; are all c.u.p. and since 7, k; #0 under small
perturbations and |¢;| <(1—8")m/2 for xe M5+ the result follows. O

Proof of Theorem 3.2. Let the original and perturbed billiard flows be (M, S,, )
and (]\71, S, (). The Lyapunov exponents A, and X, exist and are finite by Lemma
3.4. Let D=d®(3Q, Q) denote the boundary distance of the tables.

Suppose that M;,, < M. Then

PRSP MES ” K (x)pu(dx) —J K (x)p(dx)

M

+J . K(X)#(dX)+I_ K (x)(dx).
M\ M; M\M;

By Lemma 3.4 the third and fourth integral are less than /3 for small enough
é and D.
Let the terms on the right-hand side of

xe Mg

SIM |k (x) = R (x)|u(dx)+ sup &(x)[lw— gl

IM K (x)p(dx) = IM R (x)fi(dx)

be I and II respectively. Here || || is the toal variation on M.

We first analyze II. Since K(x)<k,(x)=1/7, and 7,=8/2 Vxe M; we see that
x(x) is uniformly bounded on M;. Moreover since u and /i are uniform on M and
M we get that | u— i[>0 as D> 0. Hence 11 < /6 for small enough perturbation.
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Let T=50/¢ and M} 1, Py r and m(x, T) be as defined in 3.5. Notice that

Is,[,w I"(x)"z("”#(d")*‘[ |k (x) = R ()| p(dx).

5T Mg\ M§

Denote these integrals by I1I and IV. Clearly

. , 2 , €
IV sup |k(x)—&(x)|w(M;\M5 1) 53 w(M\Mj 1) <E

xe Mg\ M; 1

for small 8" by the construction of Mj .
Finally we have to bound the integral III. First we see that

|k (x) =Kk (x)|=<|x(x)— K2m(x,T)(x)| + |K2m(x,T) . 'EZm(x,T)(x)|
+ | Kom(x,1y(X) = K(x)|.
By the choice of T and Lemma 3.3 the first term is less than £/50. Take a sequence

of perturbations {Q*}¥_, such that d”(aQ% Q)0 as k->co. Let {k5,} be the
corresponding convergents. Then

. k
’I‘Ln; sz“(x,T)(X) = K2m(x,T)(x) VxeM; r

since for big enough kS'¥x is in Ps/5r(x) ¥7€[0, T] (by the Lemma 3.6) and
Ps.,r can not be gracing if d®(3Q* 6Q) < 8'/2. By Egorov’s theorem there is
M'< M ¢ such that u(M} \M') < €8/200 and k, such that for k =k, and Vx € M’

k E
m(x, X )~ Kam(x, < .
| 2 x, 7 (X) — K2 (,‘r)(x)| _100

Therefore

2 €
- K5 <S—t—=—
J‘MéJIKZM(x,T)(x) K2m(x.T)(x)|P'(dx) 8200 100 50

Notice also that m*(x, T) converges to m(x, T) for u-a.e. x € M; 1 by the continuity
of 7{’s. But again by Egorov’s theorem there is M" < M r such that u(Mj r\M N<
£6/200 and k,=k, such that Vk=k,, xe M" |m(x, T)— m*(x, T)|<1. So
K5t 1) (X) = Kamx,ry ON M" and since |k5,,%(, 1(x) — k“(x)| < £/50 we also have

2 e6 € 3e
. —x* <——F—=—,
IMiT|~2m(,,r)<x> KAluldx) <5 5oet e =1

Consequently 111 <e/12.
Since the perturbation space is separable the argument immediately extends to

the general case. O
Remarks. (1) The theorem is likely to be true for billiard tables with adjacent
dispersive components as well as for tables like the canonical table with a; angles
allowed to be acute. The difficulty in proving it seems purely technical. In
Lemma 3.4 the current upperbounds for the curvature fail in the acute case since
then essentially 7 = 0. Or equivalently , is not integrable since 7, + 7, does not have
an absolute lower bound. But it is easy to see that if « is the angle of intersection
and n=min {k|7/k=<a} then ¥|_, 7, has an absolute lower bound. This together
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with kK, = Kk3;=ks="+=k in turn implies that we would have to bound « with
either k, or x,,, whichever has odd index. Integrating these for n =5 seems quite
difficult and provides only little insight into the problem and we omit these
extensions. Notice also that @ =0 i.e. the existence of a cusp implies the existence
of trajectories with Z,.”:, 7, <& for any given &, M > 0. Consequently any estimate
using «,’s would fail.

(2) There is numerical evidence for example in [BSt] that the entropy is con-
tinuous for some focusing billiards under boundary perturbations. This can be
proved using our approach. Moreover we expect that billiards on ‘strictly convex
scattering’ tables of Wojtkowski ([W]) have continuous entropy under C “.perturba-
tions of the boundary (these smooth perturbations ensure that the mixing properties
that are needed later will not change).

4. a-congruence

Although the continuity of the entropy under perturbations is an interesting result
per se we will see that it leads to a considerably stronger statement once it is coupled
with certain results from the Bernoulli theory. Showing this is the main purpose of
the present section. We proceed in this by first defining the concept of a-congruence
and stating the main theorem. After the proof we discuss briefly some implications
of the result. The definition is as in [OW] which we refer to for further motivation
and interpretations.

Definition 4.1. Two measure-preserving flows (M, f;, u) and (M, f,, /4) on a compact
metric space (M, d) are a-congruent if there is an isomorphism ¢ (i.e. an invertible
measure-preserving transformation such that ¢ o f; = f,o¢) and « moves all but & of
the points of M by less than « i.e. u({xe M|d(:(x),x)=a})<ea.

Remark. (1) If the flows are also ergodic then by the Ergodic Theorem
T
L a0 s dis | awx e weae.
i.e. the definition is equivalent to requiring that (in addition to the isomorphism)
the infinite trajectories of f, and f', are almost surely within a of each other for all
except density a of times. Hence in verifying a-congruence between two flows it
suffices to determine their d-distance for a-fine partitions as defined in the Appendix.

(2) The concept has a natural interpretation in terms of a viewer. If a viewer is
observing the space M with resolution o and commits an experimental error with
probability a (density of times that the observations are not correct) then f, and f,
are indistinguishable to the viewer.

(3) a-congruence is an attempt to remedy certain shortcomings of the concept
of structural stability. In the latter the flows are conjugated by a homeomorphism
which however in general preserves none of the measure-theoretic structure of the
systems (typically a set of trajectories of full measure gets mapped onto a set of
measure zero). By giving up the continuity in the conjugation and allowing the map
to fail to couple on a small set we obtain a concept that seems more natural for the
purposes of smooth dynamics and moreover has greater versatility as shown in
[OW] and [El].
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(4) For the case where the flows act on different spaces the Definition 4.1 needs
to be modified. However in the case of the billiard at hand the change is trivial
since the phase spaces are embedded in the same space (R?) and inherit the metric
from it. For simplicity we will from now on assume that this metric has its diameter
bounded by one.

The main result is:

THEOREM 4.2. Given a >0 the billiard flow (M, S,, ) on a canonical table is
a-congruent with a sufficiently small time scaled perturbation (M, S, ii) of the type
described in Theorem 3.2. Here ¢~ 1 as a0.

In proving this it is instrumental that the processes are Bernoulli and hence finitely
determined. For the definition of this as well as certain concepts used in the
subsequent proofs see the Appendix.

Definition. By a regular partition of the phase space M of the canonical billiard we
mean a finite partition ? = {P,}\., where P,=C,n M and {C;}\, is a disjoint cover
of M with cubes of sidelength 8. If we have a collection of manifolds {M "} we
let M=\J, M" and define regular partition for this as above. Then the induced
partitions are formed by P/'=C,nM".

LemMa 4.3. Let (M, S,, p) be a canonical billiard system {(M", ST, u")} a sequence
of boundary perturbed billiards converging to it. Let P = {P} ., be a regular partition
and {P"} the induced partitions. Then
|h(S,, P)—h(ST,, P")|~>0.

Proof. Since fine partitions are not necessary generating we cannot conclude this
form Theorem 3.2. Due to the singularities in the fibres the argument here is
necessarily a little more complicated than in the geodesic flow case (see [OW]).
The idea is to show that the size of a typical future N-?-atoms does not change
much in small perturbations. We only need to consider the equipartitioning property
on a small test set by the local Shannon-McMillan-Breiman Theorem.

For a.e. xeé M we have both the contracting and expanding fibres through it.
Denote these by y“(x) and y°(x). They have positive length and by their construction
(in [S1]) given &> 0 we can define a test box Q,> M as follows. Let Q, be such
that 8(e) = u(Q,), diam(Q,) = 8(e) and it is well fibred in the sense that most of
its points are on ‘long’ smooth fibres i.e. the fibres do not have cusps in Q.. Defining
y<(x) to be the connected smooth component of y‘(x)n Q, containing x and
similarily for the expanding fibre we formally require that

p({xe Q. |yi(x) and y*(x) exist}) &
w(Q.) 2
Obviously 8(£)/0 as £}0. Moreover we assume that 4Q, is nice in the sense that
u({xe M|d(x,8Q.)=A}) = O(8).
The existence of such test box follows from the existence of the fibrations and their
absolute continuity.
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Let #N =V,.'1, T'? where T=S§, for some #>0. Choose N such that the
PN.atoms for which there is a constant C such that

C e NhT2)+e) o w(P' N Q. )< C e~ NH(TP)=e)
n(Qe)
fill at least a set of measure (1—¢/2)u(Q,) in Q.. This is possible by the SMB
Theorem.

Let S, be an arbitrary well-fibred two-dimensional section of Q, spanned by the
flow direction and the contracting fibres. The well fibring is in the aforementioned
sense only the measure being restricted to the section S,. It is covered by
V,:0 T '®N.atoms and by the absolute continuity of the expanding fibres an atom
of correct size (in the sense of the SMB Theorem) in @N.partition induces (through
the \/, -joining) such in the section. Equivalently the number of these generic atoms
covering all but fraction & of the Q,-box is the same as that covering the section
and growing at the exponential rate

h(T, @)“é‘u(@ §7 T—'@)=H(.@”/§7 T“Q’N).

Given y:(x) we now claim that for most x€ S, it is covered by almost the same
number of atoms as S,.

Consider ¥ < y&(x) which is a segment with constant N-2-name. It is sufficient
to show that its continuous image under S, in Q, (a strip in S,) intersects only with
relatively few 2?™-atoms. This is because given any x € ¥ the number of different
N-P-names of S,x, t € (0, 8) is proportional to N. This in turn is implied by the fact
that a name can change only through ?-boundary crossing of at least one of T 'x,
i=0,..., N—1 and the boundary layer is thin by our assumption on the niceness
if the partition ?. Since the diamter of Q, is bounded by 8(¢) the argument applies
to any flow translate of x€ S, and the number of atoms thus obtained along the
strip is o(e™). Hence for most xe S,y:(x) is covered by N N-- atoms, he
(h(T, ?)— Cs, h(T, ?)) for some C independent of e.

By our earlier results we know that the contracting fibres of (M", 87, u") converge
to those of (M, s,, u). Hence for large enough n the fibres are covered by the same
number of N-P-atoms. Hence the set Q, is covered by almost the same number of
atoms and the partition entropies are close. O

Proof of Theorem 4.2. Fix e, t,>0. Given a &-fine partition (diam(P,)<¢) and
induced partitions {?"} we have by the previous lemma that

|h(S,, P)—h(S], P")| <8 Vn=z=n,.

The correct & to be used will be specified later. By choosing an even smaller
perturbation we can match the finite distributions of (S,, ?) and (S7,, ?"). Note
that although M and M" are different MAM" is negligible and the distribution
matching can be done. By the fact that the flows are Bernoulli and hence finitely
determined we can choose & in the beginning in such a way that
d((S,, ?),(S:,?"))<e/3. Hence for the continuous time distance we have
d((s,, ?),(S!, P"))<2e/3. From Theorem 3.2 we conclude that h(S,) = h(S:) for
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some sequence c,~> 1. Therefore by the Isomorphism Theorem S, and S, are
isomorphic Bernoulli flows. d((sy,®"),(Se,, P"))>0 as n->oo (by a continuous
time analog of Theorem 3 p 41 in [O]) and we see that the (s, ?),(SL,,?")<e.
Finally since the partition @ is e-fine S, and S7, are e-close in the d-metric that is
defined using the original metric d of the space. Hence by Remark (1) following
Definition 4.1 the flows are a-congruent with a =2e. O

Remarks 4.4. (1) a-congruence can only be shown for billiards that are Bernoulli
flows. If one of the flows is Bernoulli and the other is of zero entropy (for example
just ergodic) the entropies obviously cannot be matched. If the other is a non-
Bernoulli flow with positive entropy (for example a K-flow) then the Bernoulli flow
can only be isomorphic to its Bernoulli factor. For a more detailed account of this
see [OW].

(2) The concept of a viewer offers an interesting interpretation of these results.
Suppose that the toral table corresponding to the one in figure 1(b) is perturbed in
such a way that the disk becomes a convex polygon. If the boundaries are closer
than ¢ in d-metric then an e-good viewer cannot distinguish the tables. But in the
case of a polygon the flow is at most ergodic. Hence the viewer can observe the
non-g-congruence and deduce the existence of the ‘invisible’ boundary perturbation

from this.

5. The smooth billiard

The objective of this section is to consider a geodesic flow on a manifold that
approximates a dispersive billiard table. First observations of this flow were made
by Arnold (see e.g. [AA]). We will show that its entropy is close to that of a certain
billiard and that it can be considered as a statistically stable perturbation of the
latter. This serves as an example of the robustness of the concept of a-congruence
and we will see that the perturbation is not structurally stable even in a wide sense.

5.1. Our smooth billiard is the geodesic flow on the unit tangent bundle of a smooth
surface Q" < R? illustrated in figure 2. The “table” consists of two flat tori (unit
squares) that are joined by two necks of total sectional (Gauss) curvature —8
(genus 3). We partition Q = QruU Qcu QF where F and C refer to the flat and
curved parts and the signs to top and bottom sheets (M is split analogously). The
arrows indicate the (y, z)-section that is shown on the right.

FIGURE 2
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It is necessary that the necks are surfaces of revolution of smooth convex (in
(y, z)-coordinates) curves. As will become obvious later our arguments do not
depend in any essential way on the curve and therefore for technical simplicity we
will assume that the necks are half-tori. Hence the curvatures of the necks are

_ cos 6
r[R;+r(1+cos 6)]

K} 0c[m/2,3m/2]. (5.1)
Whenever there is no danger of confusion we will suppress the index r (radius of
the circular section) in the notation.

Definition 5.2. The geodesic flow G, on Q acts on the unit tangent bundle M = SQ
by translating a unit vector x along a geodesic v, to the vector y,. We assume that
R, and r are such that the flow has finite horizon i.e. the visits to the necks occur
at bounded intervals for all x. This flow is called the standard smooth dispersive
billiard or in short SSDB.

The geodesic flow preserves the Liouville measure du = do dw where do is the area
element induced by the metric and dw is the Lebesgue measure on s'.

The standard dispersive billiard (SDB) which we denote by (M, S, u) is defined
on the table obtained from the table in figure 1(b) by threefold reflection. Then the
opposite flat boundary pieces are identified, i.e. the table is a flat torus with two
circular obstacles. These are of diameter R, therefore the flow has finite horizon.
Note that the total curvature of the boundary and hence the manifold M is —8m.
Our aim is to consider the convergence of the sequence {(M', G7, u")},-o to
(M, S,, p) as r approaches zero. We start by introducing some more notation and
describing the basic properties of toral geodesics.

Let é’(é) denote the universal cover of Q"(Q) i.e. the periodic extension of
Q'(Q) with respect to the flat boundaries in figures 2 and 1 (the construction
naturally extends to M"(M) as well). Define d to be the length of the longest
straight line on é and for a fixed small r,> 0 let

d-= inf {shortest distance between two necks along M}.

0<r<ry

Let 7": Q" — Q be the projection (x, y, z)—(x, y). We use the same symbol for the
projection from M" onto M as well. Hence in particular ="(M") = M. The projection
m:8Q" > Q’ is as before. In the following we occasionally consider the curvature
K" as a function on SQ".

PrOPOSITION 5.3. Let T be the surface of revolution obtained by revolving a circle
(y—=R~—r)*+z>=r* around the z-axis. Let y, be a geodesic on T, a(t) the angle
between it and the meridian through Gx and r(t) the distance of G,x from the z-axis.
Then we have Clairaut’s relation:

r(t)sina(t)=C.

The proof of this can be found in standard references for differential geometry e.g.
[Sp]. By applying Clairaut’s relation we can further characterize the geodesics. We
now assume that a(0) opens invards and is not blunt.
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LEMMA 5.4. Let p., p_ and p, be the top, bottom and inside parallels of T. Suppose
that m(x)€ p+ and let 7=inf {t>0|a(t)=m/2 or w(Gx)€ po}. Then

(i) 31 a. (0, m/2) such that for a(0)=a, r=00. For a(0)# a. 7 is finite and
either 0= a(0) < a.: 7w(x) € p.=>7(Gy,x) € p= and a(27) = a(0) or

a,<a(0)=m/2:m(x)ep.=>m(G,r.X)EP.

and a(27)=m—a(0).

(ii) lim, o a. = 7/2.

(iii) V8>0 m/2—8<a(0)<m/2 implies that |a(t)—m/2|<8Vte[0,27].
Proof. Let w(%) e p. and G, % be the geodesic that satisfies R = (R +r) sin a(0). For
a(7)=/2 the tangent vectors to G,X and p, at w(G,X) agree hence Gx € p, for
t= 7 by the uniqueness of the geodesics on a smooth surface. But this is impossible
unless 7= (i.e. G,% spirals in). Define a, =arcsin (R/(R+r)) and (ii) follows.

If 0=<a(0)<ea, then by Clairaut’s formula R>(R+r)sin a(0) so for some
e(a(0))>0

0=<r(t)sina(t)<R-e¢.

Since r(t)= R we get
Osa(t)g—a(a(O)) V't and for some 6 > 0.

So r<o and m(x) € p.=>7(G,,x) € p_ by the symmetry with respect to po.
If a, <a(0)< /2 we have R <(R+r)sin(0) hence

R+e=r(t) forsome e(a(0))>0.

Suppose that a(t)<w/2Vt ie. Gx spirals in. Then the w-limit set of {Gx}i=0
would be a parallel and geodesic. But there are none between p.. and p,. Hence for
some finite 7a(7)=7/2 and we get w(x) € p,=>m(G,x) € ps.

For a(0)# a, by Clairaut’s relation and symmetry a(27)=a(0) or 7—a(0)
depending whether the geodesic changes sheets or not. This completes (i). Finally
the inequality sin a(0) <sin a(t) implies (iii). O

6. Ergodic properties and the second perturbation theorem
The ergodic properties of a geodesic flow in the non-uniformly hyperbolic case are
investigated in detail in [P]. In particular it is shown that

THEOREM 6.1. A geodesic flow on a two-dimensional compact manifold of genus greater
than one and without focal points is isomorphic to a Bernoulli flow.

By [Eb] the existence of focal points implies positive curvature somewhere on the
manifold hence the SSDB G, is isomorphic to a Bernoulli flow. In [P] the Pesin
formula h, = A, for the geodesic flow in the case at hand is established. h, is the
measure theoretic entropy of the flow and A, is its positive Lyapunov exponent. In
order to determine the Lyapunov exponents of the flow one needs to examine the
fibration of the manifold into contracting and expanding submanifolds. This has
been done for example in [AA] and [S2]. By these classical results the exponent
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of the contraction rate along the fibres equals to the curvature of the fibre (or the
horocycle). Hence the Lyapunov exponents are obtained by averaging this curvature
along generic trajectories as shown in § 2.2,

The main result of this section is:

THEOREM 6.2. Let (M, S,, u) bethe SDB and {(M,, G, u")},~o the SSDBs of sections
5.1 and 5.2. Then A~ A..

The analysis of the contracting fibres that determine the Lyapunov exponents is
rather technical. We proceed to examine them in a series of lemmas describing the
evolution of the curvature of a geodesic section that culminate to the proof the
above. We will omit the index r until the actual convergence results appear.

LEmMA 6.3. Let k(Gx) denote the absolute value of the curvature of a section of an

infinitesimal geodesic ray bundle around G,x. Then
1}

"K(Gx) di+ J " K(Gx) dt. (6.4)

n

1

k(G,x) - k(G,x) =j

4y

Proof. This is just the Riccati equation integrated. See e.g. [M].

Let y(x) denote the local contracting fibre through x and «(x) the absolute value
of its curvature. These exist for u-a.e. x € M. Let y(x) denote a smooth approximate
fibre and & the corresponding fibre curvature. y(x) is an orthogonal section of
geodesic rays at x and K(Gx) is either 0 or c for some finite .

Lemma 6.4. If £(Gx)#0, oYte[0, T) then |k(x)—Kk(x)|<1/T.

Proof. Let x(x) and &(x) be the curvatures of the approximative fibres that yield
parallel and focusing sections respectively at time T. Obviously k(x) = «(x) =& (x).
If we denote A(fr) =k (Gx)—k(Gx) then by the previous lemma A=(k+x)A. But
the solution of this equation is minored by the solution of A= A? which blows up
before time T if A(0)>1/T. Hence (K —x)(0)=<1/T as claimed. O

If xedM. is such that its direction satisfies a(0)e(—7/2,—m/2+8)u
(w/2—8, m/2) we call it 3-oblique. If ze M and z=Gxx, xedMc, t>0 and Gx e
M Vse[0,t] we say that z is 8-oblique if x is. This is consistent with Lemma
5.4(iii). Also define

Bj,, ={x € M |the nth arrival of G;x to M. is 3-oblique}.
We now proceed to establish two lemmas that will enable us to ignore oblique
trajectories in the main argument.

LEMMA 6.5. There is C(n) such that

J k(x)u(dx) < C(n)é.

For a family {(M", G}, u")},~o this estimate holds uniformly i.e. C is independent
of r.

Proof. Let x& M and define {;};~, and {w;};~, be the times when G,x enters and
leaves M. If G,x is gracing M we have a; = w; or @; = w;+, depending on whether
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X € Mx or x € M. To avoid complicating the notation and without loss of generality
we assume in sequel the former. To prevent focusing on Mg we need

1-dcx(G,x)>0
hence x(G, x)<1/dc ¥Yx e M. This bound together with Lemma 6.3 implies
I " (G d:<i-I '
de

w; ;

For a fixed xe M let

" K(Gx) dt.

I(L)=J {[w, @i+1]1n [0, L]| G,,,,x is 8-oblique}
i=1

and let m(L) be the number of intervals in I(L). Then

1 ) m(L) IJ'
- Gx)dt= -— K(Gx) dt (6.5.1)
LJ,(L>K( x) dl L) (Gix)
By the Ergodic Theorem
1 1(*
—J K*(Gx) dt=‘j fs(Gx) dt*I fs(z)p(dz) (6.5.2)
L I(L) L 0 M

for w-a.e. x€ M where
k*(z) if the nth arrival of G,z to Mc

fi(2)= is 8-oblique
0 otherwise.
Hence
I fs(z)u(dz) = J k*(z)p(dz). (6.5.3)
M B,

With similar argument we get
1

—J K(Gx) dt»I K(z)u(dz) p-as.
L) Ban

Let
B;,(q)={UcS'|m(x)=¢,x€Q
x U and the nth arrival of G,x to M- is -oblique}.
Consequently B;, is skew product of Q and B;,(-). Let

P = sup {number of necks visible from g on 0}.
qeQ

Since G| have finite horizon P is finite and independent of r. The number of obstacles
reachable at the nth reflection is bounded by P" (with the possibility of the same
obstacle counted again at different reflections). Since the obstacles are convex we
see that

sup w(Bs;,,(q))=2P" sup w({largest connected bundle of geodesics from g
qeQ qeQ

that are 8-oblique at the nth bounce}).
But the supremum is clearly bounded by some C8, C independent of r (in fact
considering the case of gracing a circle it is easy to establish the bound
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C min {8, 6°/d} where d is the length of the geodesic). Therefore
—I K(Z)u(d2)=—j K(q)I dw o(dq)
Bs.n Q Bc.n(q)

S—J K(q)o(dg)P"™" sup w(Bs(q)) s
Q geaMy
=167wCP"5.

Clearly

lim L)s Cu(Bs,,) = Cs. (6.5.6)

L dcL "
Formulas (6.5.1)-(6.5.6) imply

I k*(x)u(dx)= C(n)é.

Bg,n

Finally

I K(x),u(dX)SJ /.L(dx)+J- k2(x)u(dx) = C8.
Bg By {x|k(x)=1} Bg,n{x|x(x)=>1}

Since the total curvature of Q¢ is independent of r the estimate is true for all
re (0, ry) some ry>0. O
Define B;(T)={xe M|for some t&[0, T]G,x is 8-oblique}.

LEMMA 6.6. For given e, T>0 we can find 6 >0 such that

J k(x)p(dx)<e.
Bs(T)

This is again uniform in r.
Proof. Recall that B;, ={xe M|G,x is 8-oblique}. So B;(T)<=\U)_, Bs, where
N =[T/d_.]. But then by the previous lemma

J’ k(x)p(dx)= g J k(x)p(dx) < C(N)é.
Bs(T) Bs,,

n=1
Since N(r) is uniformly bounded the result follows. O

Remark. By the uniformity in r in Lemmas 6.5 and 6.6 we obtain the bounds to the
SDB as well.

Let M,(8)={xe MZ|x is not 8-oblique}. Analogously to Lemma 3.4 we have
LEMMA 6.7. Given 8, € >0 3r,> 0 such that

J k' (x)u'(dx)y<e Yre(0,r).
ME(8)

Proof. If K"=1/(Rr), then for toral necks K"=—-K"(x) Yxe M". Let xe M(3).
Since formula (6.4) holds for k" we see that if k"(x) =>JK" then k' (Gx)—k"(x)=0
for t=0 as Gxe M_. Let y= G,xe M(8) be the exit point from M. It exists
for small enough r, precisely as soon as a,> m/2—8. Then

VK '=k'(x)=k"(Gx)= K’(y)SdL Vie[O0, s].
C
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But K" - o as r|0 hence the inequalities are violated and x"(x) <V K" Vx e M(3).
Therefore

r r £ r -
JMM) k" (x)pu"(dx) = \/;J’M:M (dx)=O(r). O

The dispersion relation is now approximate.
LEMMA 6.8. Let 8>0, xedMpy, a(0)e(—m/2+8, w/2—8) and 7 be as in Lemma
5.4. Then

k(G3.x)—k(x)= —m (1+0(r)).

The correction is independent of x.
Proof. By Lemma 6.3, some elementary geometry and formula (5.1) we have

k(x) = k(G;,x)—f '

v K'(Gix) dt*J‘ [k(Gix)] dt

0

1 2 1 2
<—-| K'(Gx)dt=—+—=—"——(1+0(r)).
=4 L (Gix) dt =+ s a(0) 1T O

Since lim,;o K'(y)=—0c0 for all y in the interior of M- we see that k(Gix) is

decreasing for ¢ €[0, 27] for small enough r. But then by Lemma 6.3 again
27

k(G3,x) = k(x)+ J. K'(Gix) dt+0O(r)

0

2
=k(x)—RiTsa(0—)(l+O(r)). O

Recall that the r-interior of the phase space of SDB is denoted by M,=
{xe M|d(x,aM)=r}. Define
M,(8, T)={xe M|d(x,dM)=r, Sx is not 8-oblique for t€ [0, T]}.
The corresponding set for SSDB is of course ME(8, T) = M (B;(T))"
The following result is a direct consequence of Lemma 6.8 and the relation (2.2).

LEMMA 6.9. Let {r[} be the lengths of the intervals that Gix spends on M and let
{¢!} be the angles (measured from the meridians) at which it enters M. Then for
xeMyu(8,T) and n=(T—-1)/d€

1

Kan(x) = 1
1+
— 2 _+o(m)+ 1
R; cos ¢; e+ 1
: 1
—Z—(1+O(r))
R;, cos ¢,

is the curvature of a infinitesimal geodesic ray bundle along Gx which is parallel after
nth exit from M.
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On the set of points generating non-oblique trajectories on [0, T] we have a natural
convergence result.

LEMMA 6.10. Let k,,(x) be as defined in § 2.1 for the SDB (M, S,, ). Then for any
5, T>0and n<(T—-1)/d we have

K3a(X) = kan(7"(x)) >0 asrl0
uniformly on M'=(8, T) (and hence w"(x) e M,(8/2, T) for small r).
Proof. Let x& Mx(3, T). First notice that 7;<d< and n=(T—1)/d“ imply
Y ri=T-1.
i=1

Let a; and w; be as in the proof of Lemma 6.5, then

n n
wi=3 7+ 3 (@i-ai
i=1

im1 i=

and since G'x is not oblique on [0, T], o[ — a0 as rl0 for a; € [0, T]. Therefore
o’ < T for small r. Hence «3,(x) and «,,(m"(x)) are the curvatures of focusing ray
bundles that are parallel at the latest at T and are not 8-oblique. Clearly 7i(x) -
(7' (x)) and ¢!(x)-> ¢;(7"(x)) uniformly in x for i=1,..., n. Hence Lemma 6.9
together with the uniformity in x established in Lemma 6.8 imply the result.

Proof of Theorem 6.2. Given & >0 choose T,=18/¢. Let n=[T./d.] and take T,
such that T,> nd € + 1. Furthermore let M'(8, To) = M" N (B5(T,))< and

M(8, T,) = {x € M|Sx is not -oblique on [0, T,]}.

Then by Lemma 6.6 we have

’J K’du'—J' KdI.LIS)I K'dp'—J Kdy.)+E (6.2.1)
M" M M"(5,Ty) M (8,To) 6

for small enough 8. The first expression on the right-hand side is bounded by

‘ J. k" du"— I K dup ’
ME(5,To) M,(8,To)
+ J k" du"+ J' K du (6.2.2)
MEA(Bs (T M (8, To)\M,(5,T)

€
s” x'dp'—J‘ de,'+—.
ME(5,Tg) M, (8,Tp) 6

Since M % (Bs(Ty))° = M=(8) Lemma 6.7 implies that the next to the last integral
on the left hand side is less than /12 for small enough r. Since
M(8, T)\M(8, r, T,)= M\ M, by Lemma 3.4 the last integral is bounded by the
same number. ‘
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Let Ms(8, r, Ty) = Mr(8, Ty) n " (M%(8, T)). Then

J' k" du"— J' K du'
ME(8,Tg) M (8,Tp)

I «"du” —J K dp| (6.2.3)
7 (Mg(8,r,Ty)) Mg(8,r,Ty)

-

) du'+ J K dp.

+ ‘[
ME(8, To\ 7~ (Mg (5,r,Tp)) M, (8, To)\Mg(8,r,To)

Here 7" is the inverse of #". Clearly ' (M%(8, To)\7 "(Mg(8, r, T;))) >0 as rl0
and since x"(x) is uniformly bounded for x € M (8, Ty) (by Lemmas 6.8 and 6.9)
the next to the last integral is <&/12. Analogously u(M,(8, T)\Mg(8, r, Ty)) >0
and since x is uniformly bounded on M,(8, T;) Vr>0 the last expression is less
than £/12 as well.

Next notice that

I k" du"— J K dy.l
(Mg (8,1,Ty)) M (8,,To)
5J |ic" (™" (x)) = & ()| u(dx) (6.2.4)
Mg (8,r,Ty)

+ sup  k'(X)|p—pm
xeMg(8.r,Tp)

where the total variation norm is on Mg(8, r, T;). But
lu—pm " =lp—u'7"" | rv,,>0

and the last term in (6.2.4) is less than £/6.
Lemmas 3.3 and 6.4 will then imply that |k(x)—k,,(x)|<1/T.=¢€/18 and
I (7™ "(x)) — w57 "(x))| <e/18 Vx e Ms(8, r, T,) for all small r. Hence

I [«"— k| dpsj |15, — Ko dp,+£. (6.2.5)
M (8,1, To) M(8,,To) 9

By Lemma 6.10 the last integral is bounded by ¢/18 for small r. Formulas 6.2.1-5
imply |AL — A <e. O

7. a-congruence in the smooth case and comparisons

We now extend the theorem in § 6 for smooth billiards into an a-congruence result
with an argument very similar to that in § 4. We will not reprove the result but
rather just point out the differences. Now the a-congruence will compare with
structural stability in an interesting way which we discuss subsequently.

THEOREM 7.1. The dynamical systems (M, S,, u) and (M, 7" e Gom "\ pu em™")
are a-congruent for small r and some c close to 1.
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Recall that 7" is the projection from M’ onto M and 7 "=(#")"". The result has
the following interpretation: The standard and the smooth billiard are indistinguish-
able flows for an a-reliable viewer that has the resolution a. Note that we assume
that the viewer cannot distinguish between the top and bottom sheets of the manifold
M’ which seems natural since their distance approaches zero. If the manifold is
‘opaque’ the theorem must be altered to indicate the a-congruence of the standard
billiard and the Benoulli factor of the geodesic flow obtained by factoring a two-point
suspension away.

The proof of Theorem 4.2 applies to Theorem 7.1 with obvious changes. In fact

it is simplified since the phase spaces are identical. Lemma 4.3 holds verbatim in
this case. We note that the expanding fibres of the smooth billiard do not have
singularities. But since they fold from one sheet to the other whenever a raybundle
grazes the regions M., 7'-projections of the fibres can double as in SDB. Therefore
the argument of Lemma 4.3 applies to 7'~ projections of the fibres of smooth billiards
as well (their length estimates are identical). Given any ¢, then for some r,>0 we
get |h(S,, P)—h(G!, P")|<eVr=r,where ?" =7 "(P) is a partition on M" and
P is a regular partition on M.
7.2. The smooth dispersive billiard is not a structurally stable perturbation of the
standard dispersive billiard. This follows from the simple observation that the inside
parallels of the necks in the SSDB cannot be mapped to trajectories of the SDB
with a homeomorphism that is close to identity. In fact the structural stability fails
in a very strong way since it is true only for a set of trajectories of measure zero.
This is because for any generic geodesic trajectory {Gx}~_« and any finite 7>0
we can find an interval of length T such that G,x stays continuously for this duration
of time in M. But then if T is large enough the trajectory cannot be uniformly
close to a SDB trajectory. Since a-congruence allows this kind of excursions
of coupled trajectories for a set of times of positive density Theorem 7.1 is
possible.

Our result indicates that once certain rigid and purely geometric requirements
are relaxed a dispersive billiard and a geodesic flow on a manifold of equal
non-positive total curvature can in certain cases be considered as almost identical
dynamical systems. As long as the entropy computations are possible we expect our
type of results to apply to more general manifolds as well. It is also noteworthy
that a-congruence does seem to apply to a considerably larger family of dynamical
systems than structural stability. Also for the latter the allowable perturbations have
to be considered rather carefully (from our example we see that for example not
all Hamiltonian perturbations work for the billiard although this is a Hamiltonian
system). And in some cases like the boundary perturbation of billiards even the
correct extension of the definition of the structural stability remains still open.
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Appendix
Definition. Let ? and P be a finite partitions of same cardinality on a space X.
Suppose (f;, P) and (f,, ) be two processes on X and let

T

a1 ®), G PV ) =% [ 4@ ), BT a

0

where d is some metric on the indices of the atoms. If the processes are ergodic,
the d-distance can be defined as

(fin @), (Jor P)) = lim inf dr((,, @), (Fo, P))(x, ()

where « where ¢ is an isomorphism. The limit can be shown to be a.s. independent
of x. The definition readily extends to the case where ? =2 =J,_, {x} and d is
the metric on X. Finally the discrete case is defined by replacing integration by
summation.

Definition. The atoms of the partition \/|_,' T ~'% which are of the form NoToP,
are called future N-P-atoms and the sequence {j;} /5’ is the corresponding N-P-name.

Definition. Let # and P be as above and let dist(?, #)=Y |m(P,) —m(P,)| where
the m is an underlying measure on X or for example the invariant measure of a
process. A process (T, ) on the space X is finitely determined if Ye>03N, §>0
such that

N-1 N-1
dist( V T2, V T“@)«S and |h(T,?)-h(T,P)| <8
i=0

imply
d(T, ?),(T, P)) <e.
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