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Abstract. We establish bounds for the entropy of the Hard Core Model/
Independent Sets on a few 2-d lattices. Our PCA-based sequential fill-in
method yields an increasing sequence of lower bounds for the topological
entropy. Additionally the procedure gives some insight on the support
of the measure of maximal entropy. The method also applies to other
lattices and models with appropriate sublattice splitting.
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1 Introduction

The Hard Core Model/Golden Mean Subshift/Independent Sets is a
highly useful model in various disciplines as witnessed by its many appear-
ances under distinct names in fields like Statistical Mechanics/Symbolic Dynam-
ics/Theoretical Computer Science respectively. Simply described, one distributes
0’s and 1’s on each vertex of a given graph and requires an exclusion rule to
hold everywhere: no two 1’s can be nearest graph neighbors ([1]).

On a k-partite graph it is natural to associate with it a probabilistic cellular
automaton (PCA) which updates each of the k subgraphs from the others with
a local rule as follows: in an all-0 neighborhood update the center vertex to 1
with probability u ∈ (0, 1), otherwise update to 0. Running a sequential update
with the PCA (from any input) through the subgraphs yields eventually any
Hard Core configuration with positive probability (and no others).

The PCA behavior is of interest for different u-values. If u is near 1, we
are in the high density regime and the characterization of the allowed Hard
Core configurations is essentially a packing problem (studied e.g. in an earlier
paper [6]). In the dilute case i.e. u is near 0, the configurations are essentially
Bernoulli(ũ)-fields (sometimes called Hard Square Gas), 0 < ũ < u.

Here we concentrate on the intermediate entropic regime. The outstanding
open question near u = 1/2 is the exponential size of the configuration space. In
almost all two or higher dimensional set-ups the exact answer is unknown. We try
to alleviate the situation a little bit by establishing a procedure to estimate the
entropy from below and to characterize the typical configurations. For simplicity
we restrict here the graphs to be 2-d lattices. This facilitates comparison to
entropy approximations elsewhere via different methods (e.g. [2], [4], [7], [8], [9]).
Our ideas also generalize to more complicated and higher dimensional set-ups.
For a general percolation approach to Hard Core see e.g. [3].
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1.1 Set-up

Let L be a 2-dimensional lattice. Subsequently we will consider mostly one of
the regular lattices (square (Z2), honeycomb (H) or triangular (T)). In a few
cases we illustrate the principles developed on more exotic stages like square
lattice with the Moore neighborhood (Z2M, eight nearest Euclidean neighbors,
a non-planar graph) or the Kagomé lattice (K). Our method is not intrinsically
2-d but for understanding the clear geometry of 2-d serves best.

A configuration on L satisfying the Hard Core Rule is an element in X =
{0, 1}L where no two 1’s can be nearest neighbors. This rule can naturally be
viewed as a zero range infinite repulsive potential i.e. a hard exclusion rule not
unlike that in hard sphere packing. Call the collection of configurations Xhc

L
.

The exclusion rule naturally imposes a sublattice split on L if it is a k-
partite graph. For example on Z2, a bipartite graph, one can man all sites on
2Z2 (Z2 rescaled by

√
2 and rotated by 45◦) with 1’s and the rest of Z2 must

then be all 0’s. Call the former the even sublattice, Le and the latter the odd
sublattice, Lo (it is a (1/2, 1/2)-shifted copy of the former). In rendering these
we will present the even/odd sublattices as circle/dot sublattices. In a similar
fashion H splits into two identical sublattices and T (a tripartite graph) into
three “thinned” copies of T. Both in the dense packing regime of [6] and in the
the entropic regime of this paper, this splitting will be highly relevant.

Let X0 ⊂ X = {0, 1}L. | · | means the cardinality and x|A means the restriction
of x to the set A. The standard measure of richness of the configuration set is

Definition 1. The topological entropy of the set X0 is

htop
X0

= lim
n→∞

1

n
ln |{x|An

| x ∈ X0}|

where |An| = n and the sequence {An} grows in a sufficiently regular fashion.

Remark. For the full shift on any lattice htop
X = ln 2 (indicating two independent

choices per lattice site). If L = Z the Hard Core model is explicitly solvable

and a standard transfer matrix argument implies that htop = ln
(

1+
√
5

2

)

(e.g.

[11]). For two and higher dimensional lattices the matrix argument breaks down
and the exact value of the Hard Core topological entropy remains an unsolved
problem except for T (see [1]). In this paper we try to approach and in particular
approximate it in a novel way.

From the general theory of lattice dynamical systems ([11]) it is known that
shift invariant probability measures on a space of configurations, M, satisfy
the maximum principle, htop = supM hµ, where hµ is the measure-entropy. The
special measures yielding the equality are measures of maximal entropy. For
two and higher dimensional systems they are in general not unique. In all our
cases they are believed to be so, but we do not actually need to know this.

For the idea of our approach recall that given the entropy function H(P) =
−∑µ(Pi) lnµ(Pi) for a partition P, it holds H(P ∨P ′) = H(P) +H(P ′|P). In
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the case of Z let P(e) = {{x|x0 = i}} and P(o) = {{x|x1 = i}} be the (generat-
ing) partitions for the even/odd sublattice for the left shift σ. P = P(e) ∨ P(o)

generates on Z and the conditional entropy formula above implies

hµ(σ) =
1

2
hµ(σ

2|P) =
1

2
h(e)
µ + inf

n

1

2n
Hµ

(

n−1
∨

k=0

σ−2kP(o)
∣

∣

∣

n−1
∨

k=0

σ−2kP(e)

)

. (1.1)

The formula readily generalizes to Zd-actions, to multiple sublattices etc. The

last expression is trivial only in the independent case (equals 1
2h

(o)
µ ). It codes the

additional entropy to be gained from the odd sublattice, given the even. In the
case of Hard Core it is manageable since 1. the rule is of range one and 2. the
hard exclusion greatly simplifies the computation of the conditional probabilities
involved. This will become much more transparent in the subsequent analysis.

2 Lower bounds

We now proceed to establish lower bounds for the topological entropy using
the sublattice partition representation (1.1) and a sequential fill-in scheme to
circumvent the dependencies. To keep the ideas clear we first present them in
the bipartite the case and then comment on the k-partite cases.

Let Ne denote an all-0 nearest neighbor neighborhood of a site on the odd lattice
in the even lattice. In the case of Z2 lattice the sites in Ne form the vertices of
an even unit diamond, ♦e (♦o). On the honeycomb and triangular lattices
these sites form triangular arrangements, △ or ▽ or a hexagon.

It will become quite useful to think the fill-in in terms of forming a tiling.
The pieces are 0/1-tiles which in Z2 case are either 0/1-diamonds (as above)
depending on whether the center site carries 0 or 1. On the hexagonal and tri-
angular lattices the tiles are 0/1-(unit) hexes. Once a sublattice is chosen, one
can tile the plane using any combination of 0/1-tiles centered on the sublattice.

Recall that the Bernoulli measure with parameter p, B(p), assigns 1’s in-
dependently with probability p to each (sub)lattice site and 0’s otherwise. Its
entropy, denoted by hB(p), is −p ln p− (1− p) ln (1− p).

Proposition 1. The topological entropy of the hard core model on a lattice with
a two-way sublattice split is given by

htop =
1

2

{

h(e) +P (Ne) ln 2
}

, (2.1)

where h(e) is the entropy of the measure of maximal entropy computed from the
even sublattice alone.

Proof. We attain the maximum entropy by first assigning the marginal of the
measure of maximal entropy to the even lattice and then filling in the non-
blocked sites on the odd lattice. These are centered at the even unit diamonds,
which have probability P (Ne). B(1/2) is the maximal entropy measure among
B(p), hence this on the allowed odd sites and the factor hB(1/2) = ln 2. QED
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The principle in the Proposition can be directly applied to square and honey-
comb lattices. A further argument is required to cover all regular lattices. In
the following result we present these arguments and further extend to Kagomé
lattice, K (a tripartite graph), as well as to the square lattice with Moore neigh-
borhood, Z2M (eight nearest neighbors in Euclidean metric, a 4-partite graph).

Theorem 1. The topological entropy of the hard core model is bounded from
below on the square (m = 4) and honeycomb (m = 3) lattices by

h
Z2/H(p) =

1

2

{

hB(p) + (1− p)m ln 2
}

, (2.2)

on triangular (m′ = 3) and Kagomé (m′ = 2) lattices by

h
T/K(p, q) =

1

3

{

hB(p) + (1− p)m
′

[ hB(q) + [1− (1− p)q]2 ln 2 ]
}

(2.3)

and on Z2M lattice by

h
Z2M(p, q, r) =

1

4

{

hB(p) + (1− p)2
[

hB(q) + [1− (1− p)q]4 hB(r)

+ (1− p)2(1− q)2
[

1− (1− (1− p)q)2r
]2

ln 2
]}

(2.4)
where p, q and r ∈ (0, 1).

Proof. The lower bounds (2.2) follow simply from (2.1) by assigning B(p) to the
even sublattice since then P (Ne) = (1−p)|Ne| where the exponent is the number
of elements in Ne in Z2 and H respectively.

On the triangular lattice the sublattice partition is three-way. We call the
parts the dot, circle and triangle sublattices. They are filled in three stages in
the order ◦ → • → ⊲. See Figure 1a and b for the notation and arrangement of
the sublattices in a neighborhood of a triangle site.

Suppose the three sublattices are initially all empty. First fill-in the circle
lattice with B(p), hence the entropy contribution 1

3hB(p). Then fill-in all dot

sites centered at ▽ with B(q), this implies the entropy increase 1
3 (1 − p)3hB(p)

from the dot lattice.
To update the center site which is a triangle we need to know that its value

is not forced. Hence

P(center triangle not forced by nearest neighbor circle or dot)

= P(no 1′s in the hexagon of nearest neighbors of the triangle)

= P(△ = 0 and ▽ = 0) = P(c2 = c4 = c5 = 0 and d1 = d2 = d3 = 0)

= P(d1 = d2 = d3 = 0 | c2 = c4 = c5 = 0) P(c2 = c4 = c5 = 0)

= P(d1 = d2 = d3 = 0 | c2 = c4 = c5 = 0) (1− p)3

= [ P(d1 = 0 | c2 = c4 = c5 = 0) ]
3
(1− p)3

= [ P (c1 = 1 or {c1 = 0 and d1 = 0} | c2 = c4 = c5 = 0) ]
3
(1− p)3

= [p+ (1− p)(1− q)]3 (1− p)3

(2.5)
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which together with the choice B(1/2) on the non-blocked dots gives (2.3).
The Kagomé lattice argument is similar to the triangular one. There are

three sublattices involved, all identical copies of the Kagomé, only thinned and
reoriented. For the nearest neighbors of a triangle-site see Figure 1c. Again we
fill in the order ◦ → • → ⊲. In the last stage the probability of the triangle site
being unforced is now

P(c2 = c4 = 0 and d1 = d2 = 0)

= [ P (c1 = 1 or {d1 = 0 and c1 = 0} | c2 = c4 = 0) ]
2
(1− p)2

= [p+ (1− p)(1− q)]2 (1− p)2

In the case of the square lattice with Moore neighborhood there is a four-way
sublattice partitioning. We denote and fill them as follows: ◦ → • → ⊲ → ⋄ (see
Fig. 1d).

The two first terms of the formula (2.4) are straightforward since circles are
laid independently and each dot has exactly two circle neighbors. Furthermore
as above we can show that P(⊲ unforced) = (1− p)2 [p+ (1− p)(1− q)]

4
.

For the diamond site at the center of Fig. 1d to contribute to the entropy we
need to know the probability that it is unforced i.e. all entries in the punctured
square S rendered with dotted line in Fig 1d. are 0’s:

P
(

S = 0
)

= P
(

all ⊲, • ∈ S are 0 | all ◦ ∈ S are 0
)

(1− p)4

=P
(

⊲ ∈ S are 0 | ◦, • ∈ S are 0
)

(1− p)4(1− q)2

=P
(

d1 = 1 or {d1 = d2 = 0 and t1 = 0} | ◦, • ∈ S are 0
)

(1− p)4(1− q)2

=
[

P
(

d1 = 1 | ◦, • ∈ S are 0
)

+P
(

d1 = d2 = 0 and t1 = 0) | ◦, • ∈ S are 0
)]2

(1− p)4(1− q)2

(2.6)
One can compute the two probabilities in the last expression to be

2p(1− p)q + (1− p)2(2− q)q and
[

p2 + 2p(1− p)(1− q) + (1− p)2(1− q)2
]

(1− r)

respectively. From these the formula in the square brackets in (2.6) can finally
be simplified to the form 1− [1− (1− p)q]2r. QED

The entropy bounds in (2.2) - (2.4) can be maximized with respect to the pa-
rameters using standard optimization routines in a desktop machine.

In the square lattice case the topological entropy has been computed to a
great accuracy (e.g. in [2] to some 40 decimal places) using the corner transfer
matrix methods. These numerical studies attack the problem in a very different
way. Our aim is not to compete in decimal count but rather present an alter-
native method applicable in many lattice set-ups to estimate the entropy which
simultaneously yields some explicit information on the generic configurations/the
measure of maximal entropy.
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Fig. 1. Tiling of the triangular lattice with hexagonal 1-tiles and neighborhoods in
triangular, Kagomé and Z2M cases.

Table 1. First lower bounds for Hard Core topological entropy and the corresponding
sublattice densities for some 2-d lattices. To the right we have indicated the best
numerical estimates for the entropy and corresponding density (in parenthesis) found
in the literature.

L max h
L

sublattice densities best estimates

Z2 0.3924 (0.1702, 0.2370) 0.4075 (0.2266)[9],[2]
H 0.4279 (0.2202, 0.2371) 0.4360 (0.2424)[2]
T 0.3253 (0.1457, 0.1559, 0.1517) 0.3332 (0.1624)[2]
K 0.3826 (0.1944, 0.1948, 0.1866)

Z2M 0.2858 (0.119, 0.127, 0.130, 0.126)

The measure of maximal entropy doesn’t need to be unique for a 2-d lattice
model but in the case of hard square gas it is. This follows from the Dobrushin
criterion ([5], [10]). Using this knowledge and the results above we now establish
bounds for the density of 1’s in the generic configurations. The exact value of
the upper bound in the following result is in the Proof but we prefer to give the
statement in this more explicit form.

Proposition 2. In the square lattice case the density of 1’s at the equilibrium
is in the interval (0.21367, 0.25806).

Proof. Let ρe be the density of 1’s on the even lattice and let c denote the
expected number of 0’s that a 1 forces on the odd lattice. Since exactly half
of the non-forced sites will be 1’s it must by the uniqueness of the measure of
maximal entropy hold that (2 + c)ρe = 1. Hence under it

P(xi = 0) =
1 + c

2 + c
, P(xi = 1) =

1

2 + c
and P (♦e) =

2

2 + c

on both lattices. The last one is due to exactly half of ♦e giving rise to all the 1’s
on the other sublattice. (0-diamond as defined in the beginning of the section).

The entropy of any distribution on the even lattice with 1-density ρe is
bounded from above by the entropy of the Bernoulli distribution with parameter
ρe. Hence the total entropy at that 1-density is bounded from above by

1

2

(

hB

(

1

2 + c

)

+
2

2 + c
ln 2

)

.
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This expression bounded by htop of Table 1 ([2] or [9]) yields an upper bound
for c, 2.6801 which in turn gives the lower bound for ρe.

The upper bound for ρe follows from a lower bound for c which we establish
using a monotonicity argument. The 1’s on say the even lattice are B(1/2)-
distributed on the non-forced sites. Call this set F. Pick a site in it which has
symbol 1. How many sites will this entry block? Let F ′ be a superset of F.
Then clearly E(c| F ) ≥ E(c| F ′) as in a bigger domain the 1 is more likely to
share the blocking with a nearest neighbor 1 on the same sublattice. Hence a
lower bound is obtained by calculating the blocking for a 1 with its eight nearest
neighbors also in F . Enumerating the 28 possible neighborhood configurations
and weighting them uniformly according to the B(1/2)-distribution we get the
lower bound for c: 15/8. This in turn implies the upper bound for ρe, 8/31. QED

Since our first estimate for the lower bound on Z2 is associated with densities
incompatible with Proposition 2 we will try out a symmetric variant of the
theme. The (near) equality of the densities on the sublattices should be a natural
property of a measure corresponding to a good lower bound since the measure
of maximal density is believed to be unique in all our cases. In the last three
cases in Table 1. the non-equality of the densities isn’t far off but for the first
two we present an “equalization”.

Proposition 3. To achieve equal densities of 1’s on each of the sublattices one
needs to replace the B(1/2) distribution in the last stage of the measure con-
struction by B(p′) and thereby ln 2 in (2.2) by hB(p′), where p′ = p(1− p)−|Ne|.

Proof. In the case of two sublattices after B(p) distribution of 1’s on the even
lattice there are a density of (1− p)|Ne| unforcing neighborhoods on this sublat-
tice. These have to produce the correct density of 1’s on the odd lattice, hence
we need the even lattice flip probability p′ to satisfy p′(1− p)|Ne| = p. QED

Using Proposition 3 one can optimize the square lattice topological entropy
bound to (a slightly worse value) 0.3921 at common density level 0.2015. In view
of Proposition 2 this indicates that the entropy generating 1’s are not yet packed
in densely enough. In the case of the honeycomb lattice the corresponding values
are 0.427875 at 0.2284.

3 Higher order blocks

To improve the entropy bounds and more importantly to get some insight into
the character of the measure of maximal entropy we now consider more compli-
cated optimization schemes involving Bernoulli-distributed blocks on sublattices.
We first illustrate the ideas on hexagonal and triangular lattices.

A three-hex is obtained by gluing together three unit hexes so that each has
two joint sides. Figure 2a. illustrates three such three-hexes next to each other
(for reference lattice edges are indicated as thin dotted lines in one of the unit
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hexes). Note that the unit tiles on each of them are all centered on the same
sublattice, the circle lattice in this case (call the tile a circle three-hex). The
dots of the other sublattice are all in the centers of the three-hexes or on their
extremities (three of them are indicated). Three-hexes of the same orientation
obviously tile the plane.

[a] [b] [c]

1 0

0 0

0 0

0 0

Fig. 2. 3-hex arrangements in hexagonal and triangular cases.

Let B(p), p = (p0, p1, p2, p3) be the Bernoulli distribution on circle three-hexes
with the probability that the three-hex has exactly k 1-tiles in it in a given

orientation being pk (so p0 + 3p1 + 3p2 + p3 = 1). Its entropy is then h
(3)
B (p) =

−p0 ln p0 − 3p1 ln p1 − 3p2 ln p2 − p3 ln p3.

Theorem 2. Let a(p) = p0 +2p1 + p2. For the hexagonal lattice the Hard Core
entropy is bounded from below by

h
(3)
H

(p) =
1

6

{

h
(3)
B (p) +

[

p0 + 2a(p)3
]

ln 2
}

(3.1)

and for the triangular lattice a corresponding bound is

h
(3)
T

(p, q) =
1

9

{

h
(3)
B (p) +

[

p0 + 2a(p)3
]

hB(q)

+ 3 [p1 + p0(1− q)] a(p)3(2− q)2 ln 2
}

(3.2)

where pi, q ∈ (0, 1).

Proof. For the construction of the measure we will fill in the lattice in the order
◦ → •. If the circle three-hexes are distributed Bernoulli with parameter p the
entropy contribution from the circle lattice will be 1

2
1
3hB(p) where the factors

result from the sublattice density and the fact that we distribute triples. As in
Proposition 1. in the next stage the maximal entropy choice for the unforced
sites on the dot lattice is the B(1/2) distribution. The total density of sites
available is computed at two different types of dot sites (as in Fig. 2a, the three

dots indicated) and is 1
3

[

p0 + 2 (p0 + 2p1 + p2)
3
]

where the coefficient 2 and the
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power 3 follow from the fact that at two of the three dot sites three adjacent
three-hexes coincide. These formulas combined and simplified yield (3.1).

On the triangular lattice a third sublattice enters and the fill-in order is then
◦ → • → ⊲. The entropy contribution from the Bernoulli circle three-hexes is
now 1

3
1
3hB(p) since each sublattice is identical, hence of density 1/3.

In the second stage the unforced dot sites are filled with B(q) distribution.

Their density is computed as above to be 1
3

[

p0 + 2 (p0 + 2p1 + p2)
3
]

, hence the

entropy contribution from dot lattice will be this expression multiplied by 1
3B(q).

In the final stage the unforced triangle sites are filled by B(1/2). Their density
in the full lattice is

1

3
P(nearest neighbor ◦ and • sites all 0′s)

=
1

3

{

p1(p0 + 2p1 + p2) [(p1 + 2p2 + p3) + (p0 + 2p1 + p2)(1− q)]
2

+p0(p0 + 2p1 + p2)(1− q) [(p1 + 2p2 + p3) + (p0 + 2p1 + p2)(1− q)]
2
}

,

(3.3)

which results from considering the two different arrangements of four neighboring
three-hexes as shown in Fig. 2c. (top and bottom cases for the top and bottom
expressions in (3.3)). The formulas merged and simplified result in (3.2). QED

Table 2. Optimized lower bounds and densities for three-hex Bernoulli blocks.

L max h
L

(p0, p1, p2, p3), q sublattice densities

H 0.4304 (0.504, 0.110, 0.048, 0.021) (0.2276, 0.2376)
T 0.3265 (0.64, 0.092, 0, 025, 0.010), 0.25 (0.153, 0.155, 0.151)

Remarks. 1. The Kagomé lattice case is treated in an analogous fashion to T.
2. Note that apart from improvements in the entropy bounds, almost all of the
sublattice densities have increased (in comparison to values in Table 1) indicating
a better packing of the 1’s on the sublattices. Moreover they have significantly
less variation which is to be expected since the densities are equal for the measure
of maximal entropy.

Let us now return to our original motivation, the Hard Core on the square lattice.
Compounding the principles above and some further ideas we will implement an
increasing sequence of lower bounds converging to the topological entropy. Along
the way we’ll get more explicit information on the configurations favored by the
measure of maximal entropy.

1-tiles in the Z2 case are diamonds of side length
√
2 centered on either of

the two sublattices. k-omino is formed by gluing together k such 1-tiles along
edges. If k = n2 and the 1-tiles are in a diamond formation we call them a n×n
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-blocks. There are 2n
2

of them. The optimization results in Section 2 were for
the 1× 1-blocks.

Consider next 2×2 -blocks. There are 16 of them, but after assuming isotropy
for them i.e. that blocks that are rotations of each other are distributed with
equal probability (inevitable when measure of maximal entropy is unique), there
are only five free parameters for Bernoulli distribution B(p) on them (p =
(p0, p1, p21, p22, p3, p4), p0 + 4p1 + 4p21 + 2p22 + 4p3 + p4 = 1. Here the first
subindex of p refers to the number of 1’s in the block and p22 and p21 denote
the two different arrangement of two 1’s in the block (side by side and across)).

The entropy contribution from the even lattice (on which we distribute first
the 1’s using B(p) is now

−1

4

{

p0 ln p0 + 4p1 ln p1 + 4p21 ln p21 + 2p22 ln p22 + 4p3 ln p3 + p4 ln p4

}

. (3.4)

The density of the unforced sites on the odd lattice can be computed from the
three cases indicated in Figure 3a. and results in

1

4

{

p0 + 2 (p0 + 2p1 + p21)
2
+ (p0 + 3p1 + 2p21 + p22 + p3)

4
}

. (3.5)

These combined yield a lower bound for htop, which is optimized in Table 3
(second row).

[a]

0

0

0

0

0

0

0

0

0

0

0

0

[b] [c]

1

1 0

1

1

x

y 

z

1

[d]

e

e

e

1

2

7

Fig. 3. n× n -blocks and update window in Z2 case. Reductions in a 3× 3 -block and
the extension.

Table 3. Optimized lower bounds and densities for a Bernoulli blocks on Z2.

block size max h
Z2 sublattice densities final/initial variables

1× 1 0.392421 (0.1702, 0.2370) 1/1
2× 2 0.39877 (0.1993, 0.2254) 5/15
3× 3 0.4014 (0.2073, 0.2254) 46/511

In the block size 3× 3 there are initially 511 free block probabilities to optimize.
When rotational invariance is imposed the variable number is reduced and ad-
ditionally we will expect blocks that are reflections of each other to have equal
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probabilities at the optimum. After these two types of symmetries are accounted
the number of free variables will be 101.

In this size and in larger blocks another feature appears which enables further
variable weeding. Consider the block in Figure 3c. The symbol assignments in
sites x, y and z are irrelevant in the sense that the existing 1’s in the 3×3 -block
already force all the odd sites (to carry 0’s) that x, y and z might force if any
of them were 1’s. Hence there are 23 blocks of equal probability. This combined
with the symmetry assumptions above yield the total of 64 blocks with identical
probabilities at the optimum (this is actually the maximum reduction achievable
in this block size). Combing through the set of all blocks for this feature will
result in reduction by a factor about 11 to the final set of 46 variables. Their
optimal values have been computed and the results are in Table 3.

Subsequently we call sites like x, y and z above weak with respect to the
rest of the given block. Only the corner sites of a block cannot ever be weak.

The procedure of variable reduction is highly useful since the above rotational
and reflection symmetry search as well as the weak site identification can be
automated. Moreover the reduction improves significantly at every stage: for
example in the next block size of 4 × 4 the initial variable number of 65.536
shrinks 66-fold to 991 final free variables.

Note also that the optima in block size n × n can be utilized as indicated
in Figure 3d to initiate the search in the next larger block size. Once e.g. the
3× 3 subblock optimum probability is known, the added half frame (e1, . . . , e7)
should be assigned B(p) entries with p computed from 3 × 3 blocks. With tai-
lored optimization routines one should be able to deal with several thousands
of variables in the larger block sizes. All the optimizations here were done with
non-specialized code using Mathematica.

The optimal block probabilities satisfy a useful monotonicity property, that we
establish next. For this let Bi, i = 1, 2 be n × n -blocks, whose subsets of 1’s

we refer to as B
(1)
i . There is a partial order on the blocks via B

(1)
i using the

ordinary set inclusion: Bi ≺ Bj if B
(1)
i ⊂ B

(1)
j . Let the optimal probabilities for

the blocks be p = (p0, p1, p2, p3, . . . , pl), l = 2n
2

(no reductions done yet and no
particular order in the coordinates).

Theorem 3. Given two blocks B1 and B2 with optimal lower bound probabilities

p1 and p2, if B
(1)
1 ⊂ B

(1)
2 then p1 ≥ p2. If B

(1)
2 \ B(1)

1 contains only weak sites

with respect to B
(1)
1 then p1 = p2, otherwise p1 > p2.

Proof. The optimal lower bound is given by h(p) = 1
n2 {−

∑

i pi ln pi +P(Ne) ln 2}
where Ne is the even 2 × 2 -diamond of all 0’s as in Section 2. Let Bi be such
that B

(1)
1 ⊂ B

(1)
2 and let p1 = p + ǫ, p2 = p − ǫ, 0 ≤ |ǫ| < p. Denote by

hǫ(p) the lower bound with the given p1 and p2. To prove the result we will
consider the entropy variation under the probability change of the two blocks:
∆hǫ(p) = hǫ(p)− h0(p). More explicitly
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∆hǫ(p) =
1

n2

{

[

− (p+ ǫ) ln (p+ ǫ)− (p− ǫ) ln (p− ǫ) + 2p ln p
]

+
[

P1,ǫ(Ne)−P1(Ne)

+P2,ǫ(Ne)−P2(Ne)

+P4,ǫ(Ne)−P4(Ne)
]

ln 2
}

,

(3.6)

where Pk,ǫ(Ne) and Pk(Ne) are theNe-diamond probabilities computed from
the different arrangements involving k = 1, 2 or 4 n× n -blocks as in Figures 3a
and b, for the block probability choices p± ǫ or p for both.

By ln (1 + x) ≈ x the first square bracket behaves for small ǫ like c1ǫ
2, c1 < 0.

If B
(1)
2 \ B(1)

1 contains only weak sites with respect to B
(1)
1 then the blocks

Bi allow exactly the same sites to flip on the odd lattice hence each of the three
last lines in (3.6) vanishes. The sole contribution to ∆hǫ(p) then comes from the
first square bracket and since this is negative for small but nonzero ǫ, it must be
that p1 = p2 at the optimum.

If B
(1)
2 \B(1)

1 contains non-weak sites with respect to B
(1)
1 let us first assume

that they force k odd interior sites (recall that the odd sites are the vertices of
the grids in Figure 3. There are (n − 1)2 such interior sites in a n × n -block).
Let m be the number non-forced odd interior sites over block B1. Then

P1,ǫ(Ne)−P1(Ne) =
(

. . .+
(p+ ǫ)m

(n− 1)2
+

(p− ǫ)(m− k)

(n− 1)2
+ . . .

)

−
(

. . .+
pm

(n− 1)2
+

p(m− k)

(n− 1)2
+ . . .

)

=
kǫ

(n− 1)2
,

where the dots refer to the contributions from the other blocks. All these terms
cancel out, since the other block probabilities are identical.

If non-weak sites only force odd interior sites then by geometry of the set-up
the two last lines in (3.6) are immediately zero. If e extra odd edge, off-corner
sites are forced, similar argument than above gives estimate (c2 + eǫ

4(n−1) )
2 −

c22, c2 > 0 for P2,ǫ(Ne) − P2(Ne) so the next to last line in (3.6) has the first
order behavior c3ǫ, c3 > 0. Some added bookkeeping yields P4,ǫ(Ne)−P4(Ne) =
(c4 + lǫ/4)4 − c44 ≈ c5ǫ, c5 > 0 (l is the number of odd corners forced).

The leading orders for the terms in the square brackets in (3.6) together yield

c1ǫ
2 + dǫ, c1 < 0, d ≥ 0. If there are non-weak sites in B

(1)
2 \B(1)

1 with respect

to B
(1)
1 , then d > 0. Hence p1 > p2 must prevail at the optimum. QED

Remarks. 1. Intuitively the result says that if neither of two even blocks gives
more subsequent choice on the odd lattice, for maximum entropy one should
weight them equally. Otherwise one should favor the one giving more choice on
the odd lattice.
2. One can readily see some chains imposed by the order in Figure 4: 0 ≺ 12 ≺
23 ≺ 31 or 0 ≺ 11 ≺ 21/22 ≺ 33 etc. The monotonicity can be utilized in limiting
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the number of n × n -blocks optimized for larger values of n (dropping blocks
with least probability as dictated by the Theorem and with least multiplicity
(most symmetric)).

 

11 12

0.236 0.0336 0.0238

0

 

0.01069 0.00337 0.00597

21 22 23

 

0.00262 0.00479 0.00215

32 3331

Fig. 4. Prevalent 3× 3 -blocks with optimal probabilities without multiplicities.

The correlation structure inside the measure of maximal entropy gradually pres-
ents itself in the Bernoulli approximations when we consider higher order blocks.
Correlations between the blocks are zero because of independence, but within
the blocks it is worth making comparisons.

By adding the optimum probabilities of all 3 × 3 blocks at a given density
level k/9 = 0, 1/9, . . . , 1 we obtain the “density profile” of this measure (here k
is the number of 1’s in the block).

Suppose next that we generate the 3× 3 blocks from 1× 1 Bernoulli entries
with the appropriate optimal p for 1’s (as found above). By adding these up we
again obtain a density profile, this time for the 1× 1 optimal Bernoulli measure
at the resolution level of the block size 3× 3. The 3× 3 blocks can of course be
generated using the optimal 2× 2 blocks as well and yet another density profile
results. These three discrete plots are rendered as curves in Figure 5.

0 2 4 6 8 10
1 + k

0.05

0.1

0.15

0.2

0.25

0.3

P

Fig. 5. 3 × 3 -block occupation probabilities from Bernoulli blocks of size 3 × 3 (dia-
mond), 2 × 2 (square) and 1 × 1 (star). k ∈ {0, 1, . . . , 9} is the number of 1’s in the
block.

Perhaps the most notable feature here is the flattening of the distributions, as
the block size increases i.e. the total block probabilities move towards the tails
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(while their means stay constant around 0.22). The curves cross between density
levels 1/3−4/9: below this cross over the shorter range Bernoulli measures favor
light 3 × 3 blocks, above it they discount heavier blocks in comparison to the
optimal 3× 3 Bernoulli measure.

When examined closer one will see that the total probability of 3× 3 blocks
at a given density level essentially comes from at most three different kinds of
local configurations (up to reductions above that is). These seem to be “grown”:
when moving from density level d to level d + 1/9 the high probability blocks
are generated by adding a (contiguous) 1 into an existing high probability block.
This mechanism cannot prevail when the 3 × 3 blocks are generated indepen-
dently from smaller blocks. Consequently the small block curves in Figure 5.
have suppressed tails. We expect this phenomenon to prevail in the higher order
Bernoulli blocks as well and thereby to be a significant feature in the long range
correlations of the measure of maximal entropy.
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