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Introduction

To analyze the stability properties of various stochastic as well as deterministic
chaotic systems a novel approach was presented by Ornstein and Weiss in [OW]
and [02]. A new type of infinite-time stability called a-congruence was defined
and shown to have most of the characteristics of structural stability. Moreover it
accomodates a wider class of systems than just smooth flows and has a number of
features of physical importance that the latter stability concept lacks. Intuitively
one might describe the notion as follows: two dynamical systems are a-congruent
if they are measure theoretically isomorphic and the isomorphism moves all but «
of the statespace (in the sense of measure) by less than .

Stability in the sense of a-congruence has been shown to a number of systems
(see [OW], [E1] and [E2]). When the limiting Bernoulli process is of infinite en-
tropy the key ingredient in the stability analysis is the calculation of the d-distance
between the processes. In discrete time this metric is the infinite-time generalization
of the Hamming distance. In this paper we generalize this argument by removing
the uniform Doeblin condition of [E1] and intoducing the uniformity in a slight
strengthening of the invariance principle (its existence is a necessary condition).
The approximating process is allowed to have a general jump distribution and the
requirement for compactness of the space is removed.

As an illustration of the consequencies of the result for other systems than the
random walks considered earlier we extend an invariance principle by Bunimovich
and Sinai ([BS)). We show that a billiard ball moving on a periodic two dimensional
table with round obstacles once scaled affinely fine enough yields a motion d-close
to a Brownian motion. This in turn can easily be converted into an a-congruence
statement about the statistical indistinguishability of these two systems.

1. The d-convergence

Let (M,d) be a Polish space. By (X, P) we denote a non-degenerate diffusion
process on (M, d) that has the stationary distribution A € P(M). Hence by tightness
the process "essentially” lives on a compact set. The diffusion satisfies the property
that for any compact C C M we have sup ¢ ||[Pz(t) — Allrv — 0 as t — co.

If M is compact the convergence above can be verified by checking e.g. the
Doeblin condition. The rate at which zero is approached turns out then to be
exponential the exponent being the largest non-zero eigenvalue of the generator of
X (see e.g. [F]). .

Let {(X7, P")}n>1 be a sequence of stationary stochastic processes on (M,d)
with stationary distributions {A\"} in P(M). We assume that for P"-a.c. w the
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paths of the process are right continuous and have left limits as £ € Ry i.e. belong
to D. The function space equipped with the Skorokhod topology is separable. In our
notation PP(T) denotes the one-dimensional marginal and P'([0,T')) the measure
on paths on D([0,T), M) that started at Xo = z. If the initial values are unspecified
they are assumed to be drawn from the stationary distributions.

We assume the following kind of uniformity in the weak convergence of the
P"_sequence. Let A be a A-continuity set and T > 0. Then Ve > 0 3n,(T, A) such
that ¥n > ny |PM(T)(A) — P(T)(A)| < € except for z € F™ such that A"(F") <e.
We call this condition (E) due to its resemblance to Egorov’s Theorem. It is easy
to see that if A" < A and [dA*/d)\] < M hold A-a:s. for some finite M, then (E)
holds. We formulate (E) to accomodate a general jump distribution for P™.

Let

T
ar(xnX) = 1 [ a0z, x)a

and define the following analog of the Prohorov metric:
B1(P2, P.,) = intint{e > 0] i({u] dr(X",X) > D < o).
Here i is a coupling measure with marginals P7, ([0,T)) and P;,([0,T)). Finally let

Z(P:“P”) = ;“;g‘_iT(P:,’Pzz) = TILIEOZT(P:"P")'

The last equality is shown e.g. in [O1].
The main result can now be stated.

Theorem: Suppose {(X},P")}n>1 and (Xi, P) are defined as above and that
P, = P, as ¢ — z. Then E(P",P) — 0.

Remark: The weak convergence is necessary but not sufficient condition (as shown
in (E1]).

Proof: Step 0: Choose a compact set C such that A(C) > 1 —e. If M is compact
let C =M.
Step 1: By using the convergence property of the diffusion we obtain T, such
that
sup || P=(Ty) — Al < e
z€C

Hence

sup ||Pe(Tu) — Py(TW)ll < 2e.
z,y€C



Then choose a bounded set C', C C C' C M such that
igéP,(Xg eC'Vte[0,T,))>1—e

Let D = diam(C"). Choose a coupling time T. so that DT, /(T + T.) < e.

Step 2: By the invariance principle P2 ([0,T¢)) = P.([0,T¢)) if » — oo and
z™ — z. Let p7, be the Prohorov metric on the space of measures on D((0,T.), M).
The function space is separable hence p1 (P, P.) — 0. By using Egorov’s Theo-
rem twice we get that for all § < § and n > ny it holds that pg, (Plh, P;) < €if
d(z",z) < § and z ¢ F, A(F) <e. Let Mo, 1.) denote the corresponding coupling
measure. If d(z",z) > § or x = (z",z) € M x F let the coupling be independent.

Step 3: Let P be a N atom partition of C \ F such that P;’s are A-continuity
sets of positive measure and diameter less than 8,/2. Let Py = (C\ F)°. Also define
the following pseudonorm (total variation on P):

N
lims —mallp = Y Ima(Pi) — ma(P)].

i=1

Clearly ||y — ma|lp < |lmy —my||pr < ||my —my|| P CP' CB.
Step 4: From the condition (E) we get the existence of ny(T,,P) such that
P (Ty) = Pon(Tu)||lp < 2€ as n > ny for all 2™ ¢ F™, A\*(F™) < e. Combination
of this with Step 1 and the ordering of the norms as above yields
sup  [IP2(T) — Pu(T)llp < de.

engC\Fn
w€EC

Define for z; € C\F", z,e€C
pr (P7,([0,74)), P, ([0, Tu)))
= infinf{A > 0] v({w| X7, and X7, are in different
P; or one or both are in Py}) < A}
and call the optimal coupling v, . Since the total variation bounds twice the
coupling error we have the supremum of pp over the given set to be less than 2e.
Off {C \ F™} x C the coupling is independent.

Step 5: Define a (Markovian) coupling on paths on [0,T), T =T, + 7, from
the constructed measures by

x"[':).'r) = /xv}_(dz),uft‘,m).
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We next show that this is a good coupling on [0, T) in the sense of average distance
between the paths. Now

d n Tﬂ n 1 ik n
(X" X) < (X K) b | AP Xt

and we denote the first and second terms of the right hand side by I and IT respec-
tively. Clearly

I< %{df_(x",o) + diam(C) + dz, (X, C)}.
From the rarity of the excursions we get that
. Tu Tw
xH{o,T) qu-_(X.C) > ?D =P,(dr,(X,C)>D)<e VzeC

and by the invariance principle a similar estimate holds for the perturbation as well.
Step 1 bounds the rest of I.

In the case of bounded M the bound for IT is immediate. In the general case
we first write for x € {C\ F"} x C

11 =/ +/ v (dz",dz)enfp 1.)-
#om = | ot feorn™ T.(d2",dz)anp 1)

On the set E(€) = { w | sup,gir, 1) X", X) > €| (X3, Xo) = x} the first integral is
bounded by ce since the second marginal of v is absolutely continuous with respect
to A and the set P, is small by steps 0 and 2. The constant c can subsequently
change from line to line but it is independent of n. By the fact that the P-variation

is small for the chosen x we get that over E(e)

Vi (dz)emf
/zeufp‘x . (d2)en(5 1)

N

= Z {/ +/ x";. (d’)I'If;,T;)}
m z" z€EP; z"¢P;,zEP;

i=1

N "

< Z {ce/ <, (dz) + ce/ .nf;'T‘)} < ce.

= z™z€F; m¢P; z€P;

Since the average distance can not exceed the supremum of the distance we get that

dp(P, Ps,) < ce. Furthermore by the choice of C and F™ we have dr (P, Py) <

1?

ce. Call the corresponding ce-good coupling 5.
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Step 6: By induction we get a family of couplings

Prr = / l‘?h-l)T(dx)xl‘[':s.T)'

Clearly these are again Markovian. Furthermore denote the limit coupling by uZ,.

Let us now consider the dynamical system (D x D, D, 6% X 01, u7,). As usual
0,'s are the shifts along paths. By a standard argument the product can be chosen
to be ergodic (e.g. [O1]). But then by the Ergodic Theorem

1 kT 1 k—1
o [ AR X0d = 13 an((X™ ) 0 (0, 0ir)

- / dr(x)u(dx) )=y,
DxD

By Step 5 the last expression is bounded by ce. Therefore the proof is complete. 1

2. Application and extension

Our result is directly applicable to all the cases considered in [E1]. But since
the requirement for the uniformity in the tail of the random walk sequence is now
removed we can in fact expect a wider range of applications. This includes sequences
of dependent random walks for which an invariance principle is known (see e.g.
[EK]) as well as deterministic dynamical systems with only a minimal amount of
"seed” randomness in them. To illustrate this more explicitly we consider the case
of billiards. Our system is slightly modified from that by Bunimovich and Sinai
({BS]).

Let us consider the uniform motion (constant speed) of a point particle in the
plane with a configuration of scatterers. The collisions to the scatterers are elastic
and obey the principle of angle of incidence equals the angle of reflection”. The
scatterers are disks of arbitrary diameter and the configuration is invariant under
a discrete subgroup of translations of the plane (T') with compact fundamental
domain. In particular we can choose the fundamental domain to be a rectangle Il =
{q| 0 < g1 < By, 0 < g2 < Bz}. The arrangement of the scatterers is also assumed
to have finite horizon i.e. the length of the longest straight line that avoids the
scatterers is bounded. In the phase space M = {x = (q, p) € I'll\{scatterers}xS'}
the billiard flow is defined as x(t) = (q(t), p(t)) = Six where q is continuous and p
the right continuous version with left limits. § preserves the Lebesque measure. Let
the initial value be chosen according to a probability measure which is absolutely
continuous with respect to the Lebesque measure and supported in M N {II x S}
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Define now a sequence of scaled planar motions as
q"(t) = %q(n’t) (mod By, B;), t>0

i.e. we are observing the position of the billiard ball through the toral window II.
If then p™ denotes the measure on the paths for ¢ € [0,T'] and p is the law of the
Brownian motion on II Bunimovich and Sinai have the the beautiful result:

Theorem: p" = pu.

Since A¢ = 0 on the torus II together with f ¢dm = 1 imply that ¢ =const> 0
it is easy to see that the Brownian Motion satisfies the Doeblin condition and in
fact an exponential convergence is attained. Moreover A" is Lebesque measure and
its Radon-Nikodym derivative with respect to ) is clearly bounded. Hence

Corollary: d(u™,u) — 0.

In fact even this result can be slightly improved. By [E2] the type of billiard
considered above is stable under smooth perturbations of the obstacles. Hence we
can remove the rigid assumption of circular scatterers and replace it by convex C°
obstacles that have their boundary curves C2-approaching circles. If a system with
this type of table is scaled as above the d-convergence result holds again. It appers
that the convexity and C?*“-smoothness are the relevant features of the scatterers
and the rest of the assumptions are just for computational simplicity.

The d-convergence argument above can under general Bernoulliness conditions
be extended to a-congruence. We restrict ourselves here just to illustrate this
extension in the particular application at hand. Already there the strength of the
concept as well as its intuitive appeal will become evident. For further elaboration
see [OW].

Definition: Two measure preserving flows (M, f,,p) and (M, ft, i) on a compact
metric space (M,d) are a-congruent if there is an isomorphism v (i.e. an invertible
measure-preserving transformation such that vo fy = f,o:,) between them and ¢ moves
all but o of the points of M by less than a i.e. p({z € M| d(«(=),z) > a}) < a.

If the flows are also ergodic then by the Ergodic Theorem

R
7| wGooE) fenit— [ duo)alx  ueae.

i.e. the definition is equivalent to requiring that (in addition to the isomorphism)
the infinite trajectories of f; and f, are almost surely within « of each other for all
except density « of times.



Let us form a direct product of the billiard flow with an infinite-entropy
Bernoulli system. We can interpret this as an observation of the billiard by a
randomly perturbed viewer. Suppose that these perturbations are confined into a
disk of size € on (M, d) i.e. the observer has a resolution bound/observation error of
size e. This system is isomorphic with the Brownian flow since they are Bernoulli
systems with equal entropy. Now let n be so large that the billiard and the Brow-
nian flow are e-close in d. Then the viewed billiard and the Brownian flow are
2e-close in d-sense by the independence of the perturbation sequence. Hence they
are 2¢-congruent. In other words an observer that commits occasional observation
errors and has finite resolution is forever unable to distinguish a fine enough billiard
from the Brownian motion. We find this striking especially when understood that
the billiard table can be arbitrarily densely packed with scatterers in which case the
billiard lives on a tiny fraction of the statespace of the Brownian particle.
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