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INTRODUCTION

Thematic classification of remote sensing data often results in
poor or moderate results even if the classifier were considered
excellent. The importance of context (i.e. the neighbourhood of
the pixel) in classifying individual pixels has been admitted but
it has not been used due to excessive computational costs. This
paper presents an application where we have used the Learning Sub-
space Classifier (LSM) introduced by Kohonen [1,2] for classifica-
tion of satellite data. With LSM we achieve excellent classifi-
cation accuracy with low computational cost at recognition phase
which allows us to exploit also contextual information.

There are two quite independent problems discussed in this paper.
The first is the LSM-classifier and its advantages in this appli-
cation. The second is the use of contextual information. These
problems are separate because the LSM-classifier simply processes.
vectorial data. All added information must be included in the vec-
tors to be classified and this problem is independent of the clas-'
sifier.

Some research groups have attempted to use contextual information.
in classification of multispectral data. There have been two major |
ways of doing this. The first one is the augmentation method used
in this paper. Another method is to perform first classification
and then try to improve the results by examining neighbouring'
classifications. This has been performed e.g. by relaxation meth- .
ods.

This paper concentrates mostly on classification of multispectral
data obtained from the spectral scanners carried by a satellite or
an aeroplane. Most of the techniques mentioned in this paper are:
also applicable to other kinds of multispectral images, e.g. col-
our pictures of scenes.




THE SUBSPACE METHOD OF CLASSIFICATION

The subspace methods of classification are based on the assumption
that the observations used in classification can be characterized
as vectors (x) in a vector space (L). This assumption is valid
e.g. for spectral representations of signals. It is further as-
sumed that the observation vectors from one class (Ci) are princi-

pally restricted to a subspace (Li) of the vector space. This
leads to the classification rule:
assign x to class C, 1if 1Pt (x) 2 P (o §# i

where P9(x) is projection of x on Lj

The subspace classifiers are computationally efficient because the
dimensionality of the class subspaces is usually low. Computation
of the projections needed for the decision rule thus involves a
small number of vector inner products and their squared sums which
is a simple task for modern processors. In practice no such deci-
sive limitations of dimensionality exist as in case of e.g. the
Bayes classifier.

The differences between different subspace methods are in determi-
nation of the subspaces representing each class according to a set
of teaching vectors. The "original" subspace method of Watanabe
(CLAFIC, [3]) uses estimates of the class correlation matrices
C(l) = E{xxT. xECi}. The largest eigenvalues of the correlation
matrices are contributed by the principal factors of the vector
distributions in Ci and so class i is represented by mi eigenvec-

tors corresponding to the largest eigenvalues. This choice mini-
mizes the mean square error when the training data is represented
by an mi—dimensional subspace. The representation is statistically

optimal but this does not guarantee minimal classification risk.
This is especially true if the class distributions are irregular
(e.g. skew or non-Gaussian).

The Learning Subspace Method invented by Kohonen [1,2] solves this
problem by iteratively modifying class subspaces when misclassi-
fications occur. The modification is performed by "rotating" the

subspaces (i.e. their basis vectors) with matrix operator (I-axxT)
where I stands for the identity matrix and o€R for a weight factor
regulating the amount of rotation. When positive the operator ro-
tates the basis vectors towards the sample and when negative away
from it. Details of the learning process and choice of are given

in [2]. The number of iterations required 1in teaching depends’

somewhat on the data. Most test results show, however, that 5-20
cycles is enough.




ON REMOTE SENSING DATA

The poor classification results of remote sensing data are mainly
due to the unsatisfactory statistical properties of the pixel vec-
tors. These properties may not be well known due to lack of or
small number of reliable ground truth observations. For instance
atmospheric disturbances cause noticeable inhomogeneity in most
large area pictures scanned from high altitudes. These facts sug-
gest that some kind of local features (e.g. texture parameters)
might be helpful in improving of classification performance. Isot-
ropy of the picture is a nonsatisfied assumption even in a scene
in state of nature. Therefore the operators extracting the neigh-
bourhood features should be rotation invariant. Because the main
goal is to classify the terrain inside the pixel area the pixel
vector should not be completely neglected in forming of the fea-
ture vector. This was also confirmed by our experiments.

The behaviour of the feature vectors near border of a homogenous
area should also be considered. Here the local neighbourhood of
the pixel contains both information about the correct class of the
pixel area and from classes of the neighbouring areas. Notice that
when the feature vector can be considered as a linear combination
of the feature vectors of each class the subspace classifier natu-
rally separates the misleading information from the correct infor-
mation.

AUGMENTED LOCAL FEATURES

All features tested were chosen to be radially symmetric for the
reasons above. They consisted of functionals f on circles of dif-
ferent radius around the pixel. The area used will be called the
set A and for simplicity the points are indexed with a single in-
dex. The fact that in most cases the correlation between points in
a picture is an exponentially decaying function of their mutual
distance suggests that the radius should be gquite short. Local
statistical properties as well as the form of f have effect on the
optimal radius and defining of it has required an extensive set of
classification experiments.

The form of the function f has mostly been restricted to a o P
function:
_ py1/p
[xA]j = { z w(r) [xAi]j} (1)

Here w(r) is a piecewise constant radial weight function and the
sun of the weights in A is normalized to one. The positive expo-
nent p determines sharpness of the operation. When it is an inte-
ger the expression is the (1/p)th power of the pth statistical mo-
ment of the data in the neighbourhood. The practical experiments




showed that only small values of p or 1/p were useful. Dispersion
functions have also been tried, e.g. forms like:

) = 4 42,172
[OA]j = { § [[xAi]j - [xA]J] } (2)
or [oA]j = { ﬁ '[xAi]j - [xA]jl} (3)

where the mean value of Xy in A is denoted by ;A‘ In practical ex-

periments these dispersion features didn't prove to be successful
at all.

Combination of x and x, is done by concatenation which is suitable

A
for subspace classifiers. Although it doubles the dimension of the
pattern vectors producing x' = [xT: BxAT]T the optimal dimensions

of the subspaces still remain low and the computational effort 1is
moderate. The scalar parameter 8 is of crucial importance. It de-
termines the overall neighbourhood weight (whereas w(r) distrib-
utes it). Concatenation instead of some kind of superposition of X

and xA also enables good control over pixel and neighbourhood in-

formation separately.

An additional augmentation can be performed in order to improve
the distribution of the once preprocessed feature vectors x'. The
vectors corresponding to different classes can differ either in
jiirection or in norm (or both). The subspace classifiers (like
otner norm-invariant classifiers) detect only differences in di-
rection. Differences in norm can, however, be converted to differ-
ences in direction by augmenting the vectors with a simple scalar-
valued augmentation function g(lx'll). In two dimensions this can
be visualized by considering two vectors inseparable by anything
but their norms (fig. 1). By a suitable function of the norm we
can map the one-dimensional vectors in two dimensions so that the
angle between them becomes nonzero.
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Figure 1. Figure 2.
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Different forms of the function g( §x'll) have been analyzed. Theo-
retically a piecewise concave one would be optimal in sense of
producing largest uniform separation in angle. In practice the
statistics of the nonseparable classes determine the form and
steepness of the function. Fig. 2 illustrates the family of func-
tions investigated most thoroughly:

P, x < Xy
n
XX
g(x) =< (p-p;) (x 5 ) + Py X, £ x <xy (4)
u 1
Py xu<x

For a constant g the optimum value is p = p; = E{Ix'll} over A, It
is also the optimal mean value of Py and P, in any case. The ex-
treme values of the curved section (xl and xu) should be deter-
mined so that xu-x is minimal. Classes with high norm deviation

|
usually separate correctly without additional augmentation.

EXPERIMENTAL RESULTS

A series of classification experiments has Deen made using a
LANDSAT-image. The picture is from wooded areas in state of nature
except for some timber cutting squares and some lake and marsh
areas. On basis of ground truth observations twelve classes were
defined. Seven of them were clearly forest and the rest consisted
of intermediate types between forest, bare areas, and marsh. Water
created one class. The classes consisted of a total of 632 pixels
which was divided in learning and test sets on the average propor-
tion of three to two. The pixel vectors had four spectral comp-
onents and especially the two components corresponding to visible
light had poor dynamics,

The classification results obtained are summarized in table 1.
Maximum likelihood (ML) classifier was used as reference method
for CLAFIC and LSM. The four-dimensional data was the unpreproc-
essed material. The eight-dimensional data was created by using
three to five adjacent circles superposed together with equal
weights to form four augmentation components. It was discovered
that the results had a maximum when the neighbourhood annulus was

at the average distance of four to five. Optimal augmentation
weight B8 seemed to depend linearly on the number of circles wused
and usually its value was between 3 and 7. The nine-dimensional

data was obtained by augmenting the Dbest eight-dimensional data
with the scalar function g. The parameters of this function were
not critical.



dimension classification results

of data ML CLAFIC LSM(learning LSM(test
material) material)
4 2% 56% - -
8 97% 89% 92% 88%
9 - 93% : 96% 95%

Table 1. Typical classification results with learning material
and test material (LSM).

The results in table 1 have been mostly obtained with 1learning
data and so they describe the relative efficiencies of the classi-
fiers. Results with independent test material have been obtained
for LSM which was the method studied primarily.

The results show that ML-classifier gives slightly better results
than LSM but the computational effort is approximately fourfold.
In this connection it ought to be mentioned that by using closed
disks (all circles 1...n with equal weights) instead of annuli
similar results were reached. Computational aspects may prefer use
of closed disks because a fast recursive preprocessing algorithm
can be used [4]. In general the computational load of this kind of
preprocessing with p equal to one or two is only a fraction of
that of classification.
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