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Abstract

The dynamics of deterministic partially permutive cellular automata in two dimensions is considered. In particular we
lay out the design principles and analyze the dynamics of generalized voter-type rules. They provide a two parameter
model class of cellular automata which exhibit annealing, diffusive and critical domain behavior. We analyze the dynamics
rigorously in certain cases and also show that all types of behavior are very close to their ideal counterparts observed
in probabilistic models based on strong independence assumptions. This is further evidence that the statistical mechanics
extends to cover also classes of purely deterministic dynamics.
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0. Introduction

For already some time it has been known that deterministic cellular automata (c.a.) are capable of exhibiting
dynamics intriguingly close to that observed in statistical mechanical systems. Indeed stimulated by this there
has been a growing interest to engineer c.a. with properties imitating diffusion, phase transitions, fluid flow,
crystal growth, etc. For general reference see [12].

Since c.a. are by their nature quite easy to implement and extremely efficient computationally (especially
in parallel environment) it is not surprising that most c.a. studies so far have heavily relied on simulations.
Through these a number of useful rules have emerged. But their theoretical foundations are by and large missing
except for a few cases mostly in the lattice gas context (e.g. [7]).

In this note we provide some theoretical insight to the construction of deterministic two-dimensional c.a.
with exactly the desired domain interaction/contour dynamics. These are c.a. in the original sense i.e. discrete
update schemes on a lattice and they do not involve any particles like in lattice gas automata. The unifying
idea of partial permutivity has been elaborated in one-dimensional c.a. elsewhere (see [3]) and here we
extend it to two dimensions. The interest is of course to see the deeper phenomena one may encounter in the

! Research partially supported by the Academy of Finland and The Santa Fe Institute.
E-mail: eloranta@janus.hut.fi

0167-2789/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI0167-2789(95)00208-1



K. Eloranta | Physica D 89 (1995) 184-203 185

case of a non-trivial neighborhood. Motivated by statistical mechanics we restrict ourselves to rules exhibiting
(pseudo) random contour dynamics [1]. Some of the rules are close relatives of the probabilistic voter-models
in interacting particle systems recently studied by many (e.g. [2,10] and references therein). C.a. models for
these have been considered earlier, e.g. in [ 14], but our approach is quite different. It connects the problem to
advances in general lattice actions and provides some rigor to the approach.

In summary we present a two-parameter family of c.a. rules which exhibit annealing, diffusive and critical
behavior depending on where we are in the parameter space. The behavior is identical to that observed in many
classical models based on heavy probabilistic assumptions (independent random flipping of spins etc.) which
are absent from our basic set-up. The dynamics is continuously dependent on the parameters and we believe
that the parametrization is also physically natural. The former property which is novel in the context of c.a.
where rules are most often isolated examples encourages us to view our results also as design principles.

The flow of the presentation is as follows. We first introduce the principles of the rules having the necessary
stationarity and mixing properties. The first alternatives for the symbolic structure governing the type of the
dynamics are laid out in Section 2.1. This is followed by the analysis of the annealing and diffusive dynamics.
In Section 2.3 we consider the global dynamical properties as well as aspects of the implementation of the
rules. In the conclusion of the chapter point, defects as well as diffusive domain dynamics are discussed. The
third chapter introduces deterministic rules with positive temperature. The basic rules are extended to a family
of c.a. which exhibit Ising-like critical dynamics and the complete phase diagram is unveiled. As the exposition
is aimed at a varied audience the proofs appear in the appendix and in the sections we only record the results.

1. The basic set-up

Let $={0,1,...,|S| — 1}, |S] < oo, be a set of symbols, the alphabet. Let L be the square lattice Z” and
LU/ its dual lattice (Z + 1/2)2. The sets X = S* and X(1/2) = SL"” are the sets of configurations. On both
of these we have the natural coordinate actions, the horizontal and vertical shifts defined by (ox)(j, ;) =
X(jp+1,00) and (ol,x)(j,“jv) = X(jnjut]) forxe X'.

Definition 1.1. A block map or a cellular automaton rule is a map on four symbols in a 2 X 2 square
neighborhood f : §* — S. A cellular automaton is the map F : X — X'/ and F : X('/? — X obtained
by requiring that the cellular automaton rule commutes with the shifts oy, and o,

Any two-dimensional cellular automaton defined on square or triangular lattice can be transformed to this
canonical form (the procedure in [3] extends easily to any dimension). Fig. 1 shows an illustration of the
lattices and the cell neighborhood. Occasionally we also refer to a set-up where a pair of c.a. rules alternates
between two triangular lattices. The rules are the same upto orientation - the neighborhood for the other is the
one shown on the right rotated 180 degrees (for details see [6]).

Fig. 1. The altemnating square and triangular lattices. Cells in the neighborhoods are white and in updates black.
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From this on we use j, and j, as spatial indices and i as a temporal index indicating the iteration of the c.a.
The representation given in Definition 1.1 is particularly useful because it enables one to distinguish invariant
sets of configurations.

Definition 1.2. The c.a. map is partially permutive if it has an invariant subalphabet: there exists ' C S
such that f (s| , 52,83, 8 ) = §' forany s; € ' and the same equation holds for any permutation of the arguments

in f.
Clearly global configurations S'* and s generated from an invariant subalphabet " are invariant under
F. We call them ground states since they play corresponding physical roles in our models (see beginning of
Yy P gp g g

Section 2.1).
To clarify the basic structures we accept the following premise.

Assumption 1.3. The set of symbols partitions into subalphabets of equal size.

As shown in [3] the case of intersecting subalphabets can be always extended to satisfy the Assumption.
The exclusion of the non-invariant symbols just serves to clarify the essence of the interaction between domains
generated from different subalphabets. If the Assumption is not valid very interesting things can happen but we
refrain here from investigating the possibly “complex™ mixture of the subpermutive and other type of behavior.

For the purpose of defining our rules we split every symbol into two parts. For any symbol s in the alphabet,
s=(a,d) wherea€ Aandd € D. A={0,1,...,p—1} is the set of subalphabets and D = {0, 1,...,g—1} is
the set of digits. In most of the subsequent analysis we will consider the simplest non-trivial set-up: p = g = 2.

To streamline the formalism let s = (s, $2, §3, 54), a = (a1, a2, a3, a4) and d = (d), d2,d3,d4) be the symbol,
subalphabet and digit vectors in a neighborhood. The entries are counted clockwise from the north-west corner.
Our rules are of then of the following form:

f(s)=(A(a,d),Q(d)). (L.1)

The table A = {A (a,d)} is called the assignment array. As functions the arrays A and Q must map as
A: S* 5Aand Q: D*— D.

This formulation is motivated by the desire to explain contour gas dynamics observed in deterministic two-
dimensional c.a. The contours are boundaries between domains generated from different subalphabets. One
would like to explain why the boundaries can in deterministic c.a. move/merge/split in a seemingly random
fashion like is in dynamic Ising models or in e.g. voter-type probabilistic particle systems ([2]).

A stationary background is provided for the c.a. evolution if the map Q has a special structure. Suppose that
Q is a generalized quasigroup, i.e. a map Q : D* — D such that the entire digit set is invariant in the sense
of Definition 1.2. These maps have the property that the global c.a. map P induced by them (Q is a c.a. rule
on digits) is permutive and hence preserves the uniform Bernoulli measure: wp = /.Lgm o P~ Here up and
y.g /) are these measures supported on D* and DL“m, respectively. The preservation is argued here as in the
one-dimensional case. Note that uj, is a non-trivial Bernoulli measure (not a point mass) when g > 2. This is
the reason why we consider the case g = 2.

The basic example of such a quasigroup is the one given by the additive rule

4
Qs: d— > d; (mod2).

=1

This is a generalization of the one-dimensional rule introduced by Ledrappier in [9]. Denote the analogous
additive rule for the triangular lattice by Qr. These two rules will underlie all our upcoming c.a. since they
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provide maximal degree of mixing in the context of deterministic c.a.
In order to state a mixing result fix a quasigroup Q and consider the subshift of finite type D of all
allowed digit evolutions under the induced global map P,

3) _ =
DY = {{du/.,;.‘,i)} | @(dGijur1.i3s A1t 10 B+ 1 i) » Qi) ) -d(j;,+1/2,j.,+|/2,i+1)}-
Let o, be the time-like shift, i.e. shift in the direction of the iteration of the c.a. map,

(O’,J)U, e ‘i(j,,+l/2.ju+l/2.i+l) for anyd € D® .

Recall that the shift on D® is mixing and therefore in particular ergodic if
u® (o‘{,"a{}'a}'(A) n B) — u® (A u (B)

as |ja| + |ju| + |i| = oo for any measurable A and B in D®®. Here u(® is the unique shift-invariant mea-
sure on the subshift induced by the invariant measure wp. For a general construction of the inverse limit
(D®, 0,000, 1) see eg. [11].

Theorem 1.d4. The shift-action (ju, ju,i) + oi'a} ot on the subshift D® induced by the additive rule Qs is
mixing.

Remark. See the Appendix for a note on the proof. It makes sense to ask how “chaotic” the digit evolution
can be in a c.a. that admits digit stationarity. The Theorem should be viewed as an answer to this: it can be
mixing, i.e. asymptotically independent. Note that it cannot be much more as deterministic c.a. are zero entropy
systems. Refinements of the result actually tell how manifold the mixing can be (see [8]).

In the forthcoming analysis our main attention is focused on deterministic c.a. rules. They will have one of
the quasigroups Qs or Qr in them and only the assignment array will vary. The randomness will be provided
only in the form of the initial measures. In view of the results above good initial measures u are such that their
projection on digits is maximally disordered,

Mo = D - (1.2)

Once this condition is satisfied the dynamics of the c.a. is remarkably similar to two probabilistic models which
are useful to keep in mind as references. Given a c.a. it’s semi-independent model is the model with the same
assignment array but where the digit evolution is independent. Note that in D® the digits at any fixed time
i are independent but the digits between two iterates are not independent (hence the shift e.g. in the time
direction cannot be an independent process). In the independent model the digits are removed completely
but the neighborhood updates have exactly the same probabilities as in the c.a. started with the initial measure
satisfying (1.2). Thereby the neighborhood dependencies are reduced, the model is close to classical statistical
mechanics models and better allows rigorous analysis.

2. The voter rules

The analysis of the basic rules introduced in Section 2.1 is in Sections 2.2 and 2.3. The former contains
the rigorous results while the latter concentrates to the implementation and global dynamics of the rules. The
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reading of Section 2.3 does not assume acquaintance with Section 2.2. Sections 2.4 and 2.5 present extensions
beyond the basic annealing set-up using similar rules.

2.1. The assignments

Having defined the underlying digit dynamics which is responsible of the pseudorandomness of the evolution
we now complete the definition of the rules. First we lay out the principles for the assignment arrays and then
give the canonical representatives of them.

We define all the rules on the two-dimensional square lattice and only point out essential differences in the
case of the triangular lattice. The rules will have two invariant subalphabets consisting of two symbols each
and they partition the whole alphabet. By our earlier convention the subalphabets are indexed by A = {0,1}
and the digits by D = {0, 1}. Hence we have a total of four symbols. For convenience we call the subalphabet
with @ = 0 the “light” subalphabet and the other the “dark” subalphabet. This is also the way they are rendered
in the illustrations.

The basic physical principles we are (first) aiming at are

(i) Subalphabet invariance as in Definition 1.2. The rule should preserve both of the subalphabets and thereby
global configurations generated by each of them separately. Such configurations should be thought as
the ground states as the c.a. will relax towards them. Measures satisfying (1.2) on the two sets of
configurations with constant assignment are then pure phases (as the +/— -phases in Ising model below
the critical temperature).

(i1) Majority domination. If a subalphabet has a majority in a 2 x 2 neighborhood, it should dominate in the
determination of the update.

(iii) Assignment symmetry. The rule should commute with flipping of the subalphabet assignment: fot=to f
where ¢ ((a,d)) = (1 —a,d) (and it is applied to each of the arguments). This guarantees that the two
subalphabets are functionally identical and only their labels differ.

(iv) Isotropy (on the lattice). Formally this means that the rule f should be invariant under a cyclic permutation
of its arguments, i.e. a rotation of the neighborhood (recall that the entries of the vectors a and d were
picked clockwise (NW,NE,SE,SW)).

(v) In the case of even representation of subalphabets in the neighborhood the assignment should be uniformly
Bernoulli distributed.

The requirements (iii) and (iv) can be simultaneously satisfied only when there is an uneven representation of
the two subalphabets in a neighborhood. So in the case of the triangular lattice there is no contradiction. To see
the problem in a Z2-neighborhood consider two arrangements of assignments, (0,0,1,1) and (1,1,0,0). An
isotropic block map would give the same assignment to the update in both cases whereas assignment symmetric
map would force a flip in the assignment. In the subsequent analysis we impose assignment symmetry first
since this property is fundamental in order to obtain rules without any intrinsic bias in favor of one of the
subalphabets. Moreover isotropy can be recaptured in an average form as seen below. Note also that all rules
with additive quasigroups are automatically isotropic on digits.

The simplest of our c.a. block maps is the majority voter rule. Its quasigroup is Qg and the assignment
array is defined as follows. By even representation we mean that the two subalphabets both have two symbols
in the neighborhood.
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4

a, if a; = a for at least three i’s,
4
J a; + Zd,- (mod 2) , if even representation and even time,
A(a,d) = i=1
4
I —a + Ed,- (mod 2), if even representation and odd time.
L i=

By the first part of the definition the action on the subalphabets is permutive and the majority domination
explains the name. In the case of even representation of subalphabets in the neighborhood the checkerboard
labeling given is just one of the possibilities. The key property that it has is that flipping of any single digit
flips the update assignment as well. The entry a, appears in the formula to guarantee assignment symmetry - it
could be replaced by any function of {a;} commuting with the flip ¢. Note that once (1.2) is satisfied the digits
are uniformly Bernoulli distributed at any fixed time. Consequently the subalphabets both have probability 1/2
of winning the update in the case of even representation, i.e. (v) holds.

If we would have simply a; + Z}‘:l d; (mod 2) in the case of even representation the rule would still produce
assignments in the two subalphabets with equal probabilities. But only two different symbols would be possible
for any even a. The given rule produces all of the four symbols with equal probabilities and consequently will
not have bias to any direction. It is isotropic in this weaker sense. Both the given and the simpler rule are
assignment symmetric.

The (strict) majority voter rule can be relaxed in different ways without immediately changing the qualitative
nature of its dynamics. By a p-voter rule we denote the deterministic c.a. rule which is defined as the majority
voter rule except that in the case of 3 to 1 majority the minority prevails with probability p. Suppose a equals
to (a,a,a,l — a) or its cyclic permutation. For these a let

, if Yo, di¢Cp,
A(a,d)= a f Zz:l ¢ I
l—a, if Y} ,di€C,.

The set C, C {0,1,2,3,4} is the set of exceptions to the majority voter rule that the p-voter rule has. So it’s
choice determines the p value. The name of the rule stems from the fact that as soon as the initial condition
(1.2) is satisfied, at any neighborhood where the 3-1-representation of the subalphabets occurs, the c.a. exhibits
a “pseudorandom” majority voter rule with the minority subalphabet prevailing with the given probability. The
inverse of p can be viewed as the degree of co-operation among the majority.

The majority vote rule obviously corresponds to Cp = (1. The p-value for a given set follows immediately
from the Binomial Theorem and the assumption that we have the uniform Bernoulli measure on the digits.

Table 1
p-values available in the g =2 -case

p Sets of exceptional digit sums, Cp
0 0

1/16 {0}, {4}

1/8 {0,4}

1/4 {1}, {3}

5/16 {0,1}, {0,3}, {1,4}, {3.4}
3/8 {2}, {0,1,4}, {0,3,4}

7/16 {0,2}, {2,4}

172 {1.3}, {0.2,4}
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The available p-values exceeding 1/2 follow from the given ones since they are symmetric with respect 1/2
(but note that for them the principle (ii) is violated). As the set of digits D increases so does the density of
possible p-values on the interval [0, 1].

2.2. Basic properties of the rules

We first study the majority voter rule since it yields to certain “topological” arguments that do not work for
the more general rules. After this we analyze the probabilistic models for this and other values of p. The results
2.1-2.3 (and their proofs) concerning the majority voter rule appeared in [5] but we rephrase the statements
here since otherwise the presentation would be incomplete. The techniques in the proof of Theorem 2.4 provide
a clue to the proof of Theorem 2.2. The proofs of the new results are in the Appendix.

Since we will be concentrating on phase boundary phenomena we must first clarify what is meant by the
boundary/contour. This is most natural to do by assigning at each lattice site a closed unit cell which belongs
to one of the subalphabets. It is centered at the lattice point and its sides are aligned with the coordinate axis.
From this the boundaries between domains of different subalphabets are uniquely defined. We consider two
domains that only intersect at an isolated point(s) disjoint.

Call a rectangle with sides parallel to the diagonals of Z? (y = +x) a diamond. The diamond hull of a
bounded set in the plane is the smallest diamond containing the set. So for example the diamond hull of four
cells in a 2 x 2 arrangement centered at the origin is the set |y| + |x| < 2. If the set is unbounded then its
diamond hull is a plane, a half plane or a wedge defined in the obvious way.

Theorem 2.1. Given a domain generated from an invariant subalphabet suppose its diamond hull does not intersect
the diamond hull of any other such domain. Then the domain will remain inside its diamond hull under the iteration
of a majority voter rule.

Remarks. 1. Note that the result is purely topological as no reference is made to the digit distribution in
the initial measure and in particular (1.2) is not assumed here. Indeed the result is true for the corresponding
independent and semi-independent models as well since the result only hinges on the structure of the assignment
array.

2. If the diamond hulls of two domains intersect then it is possible that the domains could merge. But again if
the diamond hull of the union of the domains is isolated it is by the Theorem a confining diamond hull.

The Theorem clearly hints towards annealing dynamics. By the structure of the assignments we expect the
boundary contour of a bounded domain to perform a random motion. This should eventually allow an even
smaller diamond hull to be fitted around the domain. By the Theorem this is an irreversible event. Extending
this intuition to more general domains we expect asymptotically the configurations to consist of arbitrarily large
homogeneous domains. In other words the c.a. should show relaxation towards one of the two sets of ground
states (consisting of configurations generated from one of the subalphabets alone). We now proceed to analyze
the mechanism behind this relaxation.

To see the basic domain shrinkage mechanism let us first suppose that we have the lower half of the lattice
LO/2 below the diagonal y = x generated from the subalphabet ') and the rest of the lattice sites from 5O,
Denote the @ -domains by B(@. If we now flip the assignments of the cells under the diagonal in the first
quadrant we introduce a boundary defect at origin. Call the lines Ly : y=x—1and L, : y = x + 1 the left
and right hull-lines. Let L be the line parallel to them and at equal distance from both. So now L is the
diagonal y = x. The defect is at the unique crossing point of L and dB). We say that this defect has the off-set
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L,(0) — Li(0) — 1 =+1.

If we would reflect the domains with respect to y = x the lines L, and L; would be swapped. The defect
would still be at the origin but in this arrangement we define its off-set as L,(0) — L;(0) + 1= —1.

It is clear that under the iteration of the majority rule the left and right hull-lines remain the same and so
does the off-set of the defect. Furthermore it turns out that the boundary defects with off-sets £1 have simple
binary interaction dynamics. If we have a +1-defect and a —1-defect on the diagonal y = x they annihilate
upon collision and in our set-up a staircase boundary with unit steps is left.

To characterize the interaction properties of boundary defects let us consider a particular ensemble of them.
Suppose that we have an alternating chain of defects on the diagonal. By this we mean a chain where
neighboring defects have a common hull-line and every +1-defect is between two —1-defects and vice versa
except at the ends (in case there is only a finite number of defects).

Theorem 2.2. Suppose that we have an initial distribution satisfying (1.2) and the assignment is such that we have
an alternating chain on the diagonal y = x. Under the iteration of the c.a. the defects perform individually symmetric
nearest neighbor random walk. Conditioned on not hitting another defect the location of a defect initially at origin
is at the ith iterate (X;, X;) where X; = ZLI Ay and Ay = £1/2 with equal probabilities. The increments Ay are
independent. Moreover the defects are independent upto the time of collision with a neighboring defect which
results in an annihilation. The defects annihilate each other maximally: if a finite number of them are originally
present at most one is eventually left. If there is a positive initial density of defects on the line the density decays
proportional to 1/ Vi, where i is the iteration index.

The given defect formulation extends to any nonzero integral off-set. The motion of these defects can be
argued analogously to Theorem 2.2 but new phenomena enter if the off-set is not equal to +1 or in the case of
just =1 off-sets we do not have an alternating chain.

Suppose that we have a single defect with off-set o, say 0 > 2 on the diagonal. Then under the iteration of
the majority voter c.a. the defect may branch into two defects with off-sets o) and o0, such that

o+or=0 (%), 002>1. (2.1)

The off-sets here are counted as before from left and right hull lines of the boundary segments immediately to
the left and right of the defect. The branching is reversible and the conservation of the off-set (2.1) (x) also
holds for the mergings. It is a immediate property of the majority voter rule that the offspring of a branching
defect always has an off-set with the same sign as the parent.

If the defects merging have off-sets of opposite sign (2.1) (*) still holds. But now 010, < —1 so their
merging is irreversible by (2.1). A particular case of this is of course the annihilation considered earlier
(01 = —0y = 1). These principles combined can be used to argue the shrinkage of a bounded domain. From
this it is not difficult to conclude the following “smoothening of the boundary” result.

Proposition 2.3. Suppose that we have a finite chain of defects with finite off-sets {o,,},':’=l . Denote the off-set

sequence at the ith iterate by {0 :’::’ . Then 0 and N(i) are uniformly bounded and the total off-set 31"\’ of"

is constant and the total variation of the off-sets 3"\ |0{"| is nonincreasing.

The irreversibility of the mergings of defects with opposite off-sets is the very reason for the annealing
behavior of the majority voter c.a. A curved boundary of a domain can be decomposed into a chain of defects
with appropriate off-sets. Their irreversible mergings result in the monotone decreasing of the total variation
i.e. straightening of the boundary. In the case of a finite island this should imply the eventual shrinkage of the
confining diamond hull. Here we only present this result with an added assumption. We call a finite domain
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convex if a line segment connecting any two lattice points in it is completely within the domain.

Theorem 2.4. Suppose that we have an initial distribution satisfying (1.2) and the assignment is such that we have
a finite convex island of one subalphabet surrounded by the other. Then the island vanishes almost surely.

The main difficulties in proving a global annealing result seem essentially combinatorial. Difficulties bypassed
in the proof of the above set in when the domain geomelry is not sufficiently controlled. Jumps of the boundary
walks become correlated through conservation laws. However these correlations seem extremely weak and they
do not seem to influence the annealing behavior in any noticeable fashion (as will be seen in Section 2.4).

By construction the p-voter rules should behave in a rather predictable fashion as p increases. However
they do not seem to yield to similar rigorous analysis as the strict voter case above. In particular there is no
reasonable definition of a boundary random walk. Also a sharp monotonicity result like Theorem 2.1 fails and
it is not clear what its weaker variant should be.

To see what to expect in the p > 0 -case we consider the independent model and argue a few results indicating
the dominant dynamics. We restrict to the situation where there is a finite light island B (i.e. generated from
the subalphabet $(®)) surrounded by a dark sca and argue the evolution of the area of the island.

The center of a 2 x 2 neighborhood where there is an even representation of the two subalphabets in a
diagonal arrangement is called a cross point. According to our earlier convention both domains are disjoint in
such neighborhood. Consider the boundary, 4B, of a finite connected light domain. We traverse it in such a way
that the domain will always be to the left of the direction where we are heading. If a point on the boundary is
not a cross point and the boundary turns to the left at it we call it an outside corner whereas if it turns right
we have an inside corner. Passing an inside corner we record —1, an outside corner +1 and a cross point 0.
Adding these together while traversing the entire boundary of B once gives us the excess e = e(dB).

Let By be the initial finite light domain and let A; be its area at the ith iterate under the evolution of a p-voter
rule. Clearly A; must be finite for finite i. In general the domain at the ith iterate, B;, will have a number of
components. Let e; be the excess of the boundary of the Jjth component.

Theorem 2.5. Suppose that we have initially a finite domain By generated from the subalphabet SO, Then under
the independent p-voter rule, 0 < p < 1, we have for the expected total area of the domain

E (Ain| A; > 0) = A; - Q%@Zej. (2.2)
aB;

The first inference that one draws from (2.2) is that the p value 1/4 corresponds to a “balanced” voter
model: the area process is a martingale. No domain shrinkage mechanism prevails here and the annealing-like
phenomenon is just a consequence of the fact that extinctions of finite isolated domains are both irreversible and
inevitable since the martingale {A;} reaches any non-negative value including zero with positive probability.

In decrypting the formula (2.2) the following result is of some use. Recall that a domain is simply connected
if any loop in it can be continuously shrunk into a point.

Proposition 2.6. Ifa finite domain B has no cross points then S ej is a an integral multiple of 4. If it furthermore
is simply connected (in particular if it is convex) then dej=4.

If we apply the majority voter rule to a configuration with a single finite and convex domain then > e; = 4 until
the extinction of the domain. Such domain vanishes almost surely.

Remark. In the last part of the statement the convexity of the domain is just for clarity. The necessary
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condition, a weaker but more technical “non-closability” condition, could be defined as suggested by the proof.
The vanishing statement is due to E. Speer.

From the Theorem we see that the drift of the process {A;}, E (A,-+| — A A > 0) is critically dependent
on the quantity Y e;. The last part on the Proposition tells us that for the majority voter rule the drift cannot
exceed —1. If the domain does not split the drift should be exactly —1 until extinction. So we should expect
e.g. a disk domain of area A to vanish under the iteration of this rule in approximately Ao steps.

Our claim is that given a convex light domain By the average value of the quantity ) e; during the iteration
of a p-voler c.a. is essentially independent of p and hence positive for all times (upto possible extinction) for
all p > 0. Therefore by the product form of (2.2) the rules with p < 1/4 should show annealing/clustering
behavior and rules with p > 1/4 domain expansion/disintegration. We briefly indicate the reasoning behind
this claim.

As the quantity > e; is originally positive consider the two principal mechanisms which can decrease it:
(i) The light domain gives birth at an inside corner to a contour inside the original one or (ii) the light
domain merges with another one. As there are originally more outside corners than inside ones the event (i)
(contributing -2 or —3 if cross points are involved and —4 if not) is on the average countered by at least
as many births to the outside each contributing the same but positive amount to ) e;. So the net effect of
the domain births of the type (i) should increase 3 e;. For (ii) we notice that as a consequence of the birth
mechanism the finite dark domains are clustered tighter as the light domains since the latter will advance to the
exterior of @B,y. Hence dark domains are more likely to merge, i.e. the total contribution to ) e; is positive.
We are here neglecting rare events like the domain folding on itself as we believe that they do not contribute
to the expectation in a significant way.

We also note the following implication of (2.2) in the case p < 1/4. Given a large disk of radius R then
(2.2) and the argument above imply that 2rRE(AR) =~ E(AA) = ¢ for some negative c¢. So E(AR) o 1/R
i.e. the domain shrinkage is governed by the curvature of its boundary. This coincides to the surface tension
formulation of contour dynamics in statistical mechanics.

Finally we note that analogous rules and results can be derived in the case of an underlying triangular lattice.
Indeed it is a simpler set-up since the even assignment case is absent. For the triangular lattice there is no
equivalent balanced rule like the 1/4-voter c.a. in the case of two symbols per subalphabet but for three there
is. The critical probability separating annealing from growth is 1/3 by the same argument as in Theorem 2.5.

2.3. Implementation and global dynamics

The dynamics was also studied in a series of computer simulations. Only small scale runs were possible with
the tools available but it must be emphasized that the c.a. considered are computationally extremely efficient.
In an ideal situation one would use a parallel computer and a suitable programming language that can match
the intrinsic parallelism of the c.a. to the hardware. For us the simulations were just to confirm the design
principles of the automata and screen for unexpected behavior.

Since only finite configurations can be simulated the boundary conditions have to be decided. There are at
least three different possibilities.

(i) Toral boundary conditions for symbols.
(ii) Toral boundary conditions for the subalphabet assignments and random updates for the digits on the
boundary.
(iii) Random boundary updates for the symbols on the boundary.
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Fig. 2. Top row: the majority voter rule, fully disordered initial state. Middle row: the 1 /4-voter rule from the top left initial state. Bottom
row: the 1/2-voter rule. All with toral boundary condition on symbols.

In the first choice (i) all pseudorandomness is contained in the initial state. For this reason dependencies might
become a dominant feature of the dynamics in long runs. However problems only seem to appear if q° is
a large divisor of the sidelength of the torus (recall that g is the number of symbols per subalphabet). The
reason for this is that then large cancellations occur from time to time in the digit evolution. These in turn
are a consequence or the digit evolution being determined by an additive action and that the Pascal’s pyramid
modulo ¢ wraps around the torus in a way which maximizes the cancellations. The existence and analysis of
spurious conservation laws in our c.a. is argued analogously to the one-dimensional case ([4]).

One should note and utilize the following feature of the design. The refreshing of the underlying digit
evolution at any iterate by replacing the digits with a up-distributed random sample does in no adverse way
affect the contour dynamics. Indeed it just breaks any dependencies in the digit evolution by introducing a
renewal epoch.

The boundary conditions (i) and (ii) have the advantage that the assignment evolution can stabilize since
there is no boundary excitation. In practice the effect of the boundary fluctuations of the assignments seemed
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negligible for all p-voter rules with 0 < p < 1/4 (on the square lattice). They all show clear domain separation
dynamics resembling surface tension effect. The clustering/nucleation rate increases with decreasing p. As
expected the majority voter rule has the cleanest evolutions. In the top row of Fig. 2 we have a sample
of this on a 60 x 60 torus with boundary conditions of the type (i). The initial state at the left corner is
uniform Bernoulli on the four symbols. The subalphabets are dark and light and the individual symbols within
a subalphabet can be detected from their shade difference. The state after 10 and 50 iterates are shown in the
center and at the right. The domain smoothing argued in Section 2.2 is pronounced and the actual “shaving”
performed by the merging boundary walks could be seen in consecutive frames.

A series of runs was also performed starting from a disk-shaped domain surrounded by the other subalphabet.
The results indicate that for the majority and 1/16-voter rule c.a. the formula for the expected extinction time
behaves like r* = Ag/(1 — 4p) as suggested the formula (2.2). In the 1/8-voter c.a. the splintering of the
domain is faster and the average value of the critical quantity 3 e; over the run seems to be at least 5 for the
same initial state.

In the middle row of Fig. 2 we have a 100 step evolution of the 1/4-voter rule from the same initial state
(on the top left). The weak clustering expected from the martingale property is clearly visible.

In this context we also note the following on p-values. In our set-up two neighboring cells have overlapping
neighborhoods. In updating the cells this causes a dependency as some of the digits are joint. As a consequence
of this the true p value is not exactly the one indicated in Table 1. However we did not discover any anomalous
behavior as consequence of this effect. In particular the value 1/4 is the boundary between annealing and
diffusive behavior.

No indication was found for the average isotropy of the rules to be distinguishable from true isotropy in
evolutions from any initial domain geometry.

2.4. Point defects

The contours defined as boundaries between domains generated from different subalphabets are examples of
codimension 1 defects. For three-dimensional c.a. they would be random surfaces and we would generate them
much the same way as contours.

If three invariant subalphabets are present in a two-dimensional configuration the triple-points on domain
boundaries where the three subalphabets meet are codimension 2 defects. Like the boundary defects of the
majority voter rule they are examples of point defects. Let us be a little bit more careful about the definition.
A 2 x 2-neighborhood is said to contain a point defect if its assignment vector a is of the form (ao, ag,a;, az)
or its rotation for distinct a; € {0, 1,2}. If the assignment vector is of the form (ag, a1, ap, az) or its rotation
for distinct a; in accordance with our earlier convention we consider four separate domains to be present in the
neighborhood. Hence there is no triple point in this neighborhood.

The voter rules can be simply refined to accommodate 2-1-1-divided neighborhoods. The principles listed
in Section 2.1 can still be applied to define these plurality voter models (p > 3, g = 2). The assignment
symmetry now means invariance under a cyclic permutation of the assignments.

From the simple topology of the contours we see that the triple points form an ensemble of pairwise
annihilating random walks. They are either originally present or are born in pairs as a consequence of a contour
joining another contour. It is notable that even in the simplest of rules, the extended majority voter rule, the
births are already present and the point defects can jump arbitrary long distances in one iterate.
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2.5. Diffusive domains

After analyzing the annealing p-voter rules it is quite natural to inquire about the dynamics of the rules with
p > 1/4. Some of the p-values available in this interval are listed in Table 1 of Section 2.1 and the rest are
1 — p as p runs through the given ones. For p > 1/2 the majority domination assumption (ii) in the beginning
of Section 2.1 is violated.

The dominant dynamics in the case p = 1 is immediate: the corner cells of a domain advance at maximal
rate (£1/2,41/2) into the neighboring domain and consequently every domain is bound to disintegrate. As
in the case of annealing voter rules this behavior prevails in a stochastic form if exceptions dependent on the
digits are allowed, i.e. 1/4 < p < 1. All these p-voter c.a. exhibit diffusive behavior as predicted in Section 2.2
and the density of the subalphabets in the interior approaches quickly 1/2. The time scale of the disintegration
of domains varies monotonically in p.

At the bottom row of Fig. 2 we have a generic sample of this behavior at p = 1/2 using a rule with same
symbols as in the rules in Section 2.3 and average isotropy. The lattice size is 60 x 60 and the boundary
condition is periodic on symbols. Experiments with other diffusive rules upto around p value 3/4 yielded
similar evolutions. Phenomena encountered in this growth regime include a second critical probability and are
studied in more detail in [6] using the the independent model.

3. Critical phenomena

The p-voter c.a. can be further extended to accommodate interesting new phenomena. In this section we will
introduce a second parameter physically analogous to temperature for which a critical value exists indicating
the fact that the c.a. family experiences a phase transition.

The splitting of the c.a. rule introduced in (1.1) gives us a degree of freedom that goes beyond the subalphabet
invariance. The fact that

A (a,d) =a whenevera=(a,a,a,a), (3.1)

together with a quasigroup action on the digits implies that the block map f permutes the subalphabet symbols
and we have the subalphabet invariance of Definition 1.2. Note however that the critical stationarity property,
i.e. preservation of a measure of the type indicated in (1.2), is preserved even if we violate (3.1). If we do
this spontaneous births are introduced i.e. a 2 x 2 neighborhood with four symbols from the same subalphabet
can generate a symbol belonging to the other one. The physical idea of (3.1) is that of zero temperature, i.e.
state where no spontaneous flips occur in an homogeneous medium. We will now break that without changing
the action on split neighborhoods and consec[uently the contour dynamics will remain the same.

A b-p-voter rule is defined from the p-voter rule of Section 2.1 by allowing the invariance (3.1) to be
broken with probability b. In 3-1 and 2-2 split neighborhoods the rule is exactly the p-voter rule. The triangular
lattice case is modified analogously, i.c. just 3-0 neighborhood action is changed. We only consider the case of
two subalphabets here. The invariance (3.1) is broken with the same mechanism as in p-voter rules,

4
(3.1) is violated if Zd,— € By,

i=l

where B, is the set of exceptions for births. The possibilities for the sets B, and values b are determined as
for C, and p at the end of Section 2.1 ( but the sets By and C, are in general different). Clearly By = gives
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Fig. 3. The (1/8,7/8)-voter rule: a quasigroup c.a. on the triangular lattice.

us the p-voter rules.

Apart from being functionally natural the b-p-parametrization turns out to have appealing algebraic structure
as well. There is a complementarity relation between the parameters which we now describe. Given the digit
quasigroup and hence the allowed b- and p-values let us call the set of all c.a. that arise from them as the set
of b-p-rules and use the notation F(; ) for the global c.a. map.

By contour dynamics we mean the motion and interaction of the domain boundaries. This determines the
essential nature of the rule as e.g. in the context of Ising model. The following result only depend on the
assignments so it holds to c.a. as well as to their independent models.

Proposition 3.1. The set of b-p-rules on either lattice are functionally symmetric with respect to the point P =
(b, p) = (1/2,1/2) in the sense that for every c.a. F(y p) there is a c.a. Fi—p,1—p) with exactly the same contour
dynamics.

Remark. Note that the results only addresses the contour dynamics and not the domain dynamics. The latter
is not identical for the complementary rule at odd times as indicated in the proof. An immediate practical
implication of the result is of course that only half of the rule space needs to be investigated.

To argue the phase portrait we now consider the invariant measures for the b-p-voter rules. The running
assumption (1.2) still guarantees maximally mixing digit dynamics.

From (i) of Section 2.1 we know that p-voter rules preserve the measures u with constant assignment:
mipu = 8 or & (the pure phases). Above the critical probability p. a third invariant measure appears. This
disordered phase dominates the homogeneous phases and growth phenomena ensue as indicated in Section 2.5.
For further details of this see [6].

The third phase which always seems unique, translation invariant and disordered can be in some cases be
exactly pinned down.

Proposition 3.2. All the rules which are quasigroups, i.e. permutive on the entire alphabet S, are on the diagonal
p = 1 — b. In the square lattice case a quasigroup rule must be at P. A quasigroup rule preserves the uniform
Bernoulli measure on symbols.

Remark. In the case of the triangular lattice there are indeed quasigroups on the diagonal p = 1 — b outside P
In Fig. 3 we have the multiplication table of a (1/8,7/8)-voter rule. The subalphabets are §® ={00,01} and
S = {10,11}. The four slices should be stacked from left to right to get the “multiplication cube”. On the
top and left of each slice we have indicated the subalphabet assignments and the convention white for 0 and
grey for 1 assignment has been used to make the structure of the cube easier to grasp. Note that by flipping the
assignments at the eight framed 1 x 1 squares the table turns into a rule with parameters (b, p) = (0,1) which
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is an example of a diffusive c.a. with extremely unstable domain behavior in the sense discussed in Section 2.5
(a 1-voter rule).

For the independent model of a b-p-voter rule this result can be sharpened to characterize when the disordered
phase is simple.

Theorem 3.3. The independent b-p-voter c.a. on the triangular lattice preserves the uniform Bernoulli measure iff
p =1 — b. On the square lattice the measure is preserved iff 2b + 4p = 3.

The last statements give us an indication how the rules are ordered in the parameter space [0, 112 in terms
of their mixing properties: as quasigroup rules are fully permutive the maximal degree of mixing (i.e. “chaos”)
is found along the lines p = 1 — b and p = (3 — 2b) /4 depending on the lattice. We will see shortly that the
least degree of mixing is found furthest away from these, i.e. at the corners (b,p) =(0,0) and (1,1).

Before considering ergodicity one has to acknowledge the existence of spurious invariant measures. By these
we mean measures that do not appear to correspond to any physical phenomenon but are rather combinatorial
artifacts. Due (o their extreme instability under perturbations they are not encountered in probabilistic models.
The only ones that we found were for b-O-voter rules. One constructs such an object by simply extending 0011
to a bi-infinite strip tilted 45 degrees either way and then periodically continuing the strip to the square lattice.
The resulting configuration is invariant (modulo a shift) and thereby gives rise to a "exotic” invariant measure.
An even simpler construction can be performed for the triangular lattice. However these measures are highly
unstable under flip perturbations and they do not persist for positive p. We exclude these measures from further
consideration.

In the parameter regime of perhaps most interest 0 < p < 1/4and 0 < b < 1 /2 our rules have two conflicting
tendencies: the annealing behavior analyzed earlier which tends to shrink finite domains and the births which
create these. This structure is indeed quite close to the one found in dynamic Ising models. These have a critical
parameter value and it should exist in our models for'the given p-values as well.

A b-p-rule is said to be ergodic if for all reasonable initial measures u we have F(Z,;"p)p = u* where p* is
a unique equilibrium measure and => denotes the weak convergence of probability measures. If the uniqueness
fails the c.a. is non-ergodic. The choice of the set of allowed initial measures must be made with care in the
context of deterministic c.a. This is necessary since if for example measures concentrated on periodic points
were allowed the ergodicity could be easily contradicted for almost any rule (a c.a. has typically multiple
invariant measures supported by periodic points, see [3]). In our context it seems natural to inquire about
ergodicity when the initial measure satisfies the stationarity condition (1.2) and the exotic invariant measures
are excluded.

A p-voter rule for any p is non-ergodic since any initial measure u supported by configurations from one
of the subalphabets only remains such under the rule. To decide the ergodicity of the b-p-rules, b > 0, we
argue as follows. If there is a unique equilibrium measure u* then the density of subalphabet S in a generic
configuration (with respect to u*) must equal to p* = 1/2. This follows from the assignment symmetry of the
subalphabets. If the equilibrium is not unique there will be conjugate (under the flip) equilibrium measures
such that for their generic configurations the density of S satisfies p% > 1/2, p*. < 1/2 and p} + p~ = 1.
If our initial measure has S density zero it seems reasonable to assume that the density of a generic point
evolves to the minimal p* . This is just because arriving at the other equilibrium requires a large deviation
event. So to test whether we have non-uniqueness of the equilibrium measure it suffices to check whether the
density of the subalphabet S(') initially absent approaches a value strictly below 1/2.

Fig. 4b illustrates the results from a series of runs with different b- and p-values on a square lattice. Most of
the runs were performed on a 100 x 100 table with boundary condition of the type (ii) in Section 2.3. Near the
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Fig. 4. Phase diagram of the b-p-voter rules and its critical corner.

critical parameter pairs (b, p) the table was extended up to size 170 x 170. The boundary condition is here of
paramount importance ~ in the neighborhood of the critical parameter value the influence of the boundary could
dominate the evolution as a consequence of the increasing length scale. The black dots indicate non-ergodic
behavior and white ones ergodic. The 1/16-1/16-voter rule is quite close to ergodic with p* between 0.4 and
0.44 but multiple runs with consistent results convinced us that it is indeed non-ergodic. The 1 /8-0-rule is even
closer to critical — it is likely to be ergodic but we do not have enough data to resolve this (hence ® in the
graph).

The non-ergodicity in the triangular lattice case is expected to be analogous. It should be noted that the
independent model there is a symmetrized Toom’s model. For the original model the phase transition has been
proved to exist ([13]) and this property should carry over to our set-up. For numerical estimates and some
statistical mechanical insight to the original model, see e.g. [10].

The figure on the left summarizes our findings concerning the phase diagrams. By Proposition 3.1 it has
central symmetry. The wedge-like corners and the black lines bounding them accommodate the non-ergodic
rules. The dots at the majority voter rules refer to the annealing result expressed in Proposition 2.6. Between the
black curves (which should be characterized more accurately in numerical or other studies) is the disordered
regime. The grey lines are as in Proposition 3.2 and Theorem 3.3 indicating the preservation of the uniform
Bernoulli measure. The critical probabilities are dependent on the lattice but we strongly believe that the phase
portrait is qualitatively as shown for both of them. More importantly in view of our results the phase diagram is
essentially the same for the b-p-voter rules and their independent models (apart from the obvious discretization
of paramelers).

4. Conclusion

We have presented a family of two-dimensional c.a. rules which exhibit a variety of different type of domain
dynamics. The principles according to which the rules have been built guarantee that the evolutions resulting
are maximally random in the context of deterministic c.a. Deterministic rules are in turn our choice since (i)
they are computationally superior and therefore perhaps useful in large scale physics computations and (ii)
provide a challenge to explain why the randomness can indeed prevail is such striking fashion in them.

The qualitative properties of the rules seem to be continuously dependent on the two parameters except for
the phase transition. No surprising conservation laws which would render the rules useless in the simulation of
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statistical physical processes are found.

Finally we note that the rules given (the assignment structure in particular) can be modified in a number of
ways. For example the available parameter ranges can be extended by alternating two rules with slightly different
parameters. This has not been tested but we do not see any problems arising especially if the resulting dynamics
is sampled by averaging, e.g. over two iterates. Also the principles in Section 2.1 could be further modified. For
example removing the unbiasedness implemented in (iii) and (v) would bring out novel wavefront propagation
phenomena while still preserving the stationarity.
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Appendix

As for Theorem 1.4 we only indicate here the details in the set-up which facilitate the use of more general
results recorded in [8]. The proof in our set-up of rectangular lattice hinges on the fact that the polynomial
1 + x + y + z + xy is irreducible over the finite field Z; (recall that our quasigroups have mod 2 addition).
The polynomial in turn is determined as a dual representation in the polynomial ring Z/2Z [xi, y*,z*] of the
shifts appearing in the definition of the subshift D). The unit shifts o, o, and o, correspond to multiplication
by x, y and z, respectively, in the polynomial ring. Hence the geometric arrangement of these unit shifts as
vertices of a pyramid gives the polynomials (see Fig. 1 neighborhoods: as time runs perpendicular to the spatial
directions the black cells should be thought to lie above the neighborhood).

Proof of Theorem 2.4. Let L be the NW face (hull line) of the confining diamond. On L we can identify
the highest and lowest points where the hull line touches the light domain (suppose the island is of the light
subalphabet). Denote these top and bottom corners on the face at time i by T; and B;. Under the convexity
assumption the variables are always well defined even if the domain splits. Let d; be the distance of the top and
bottom corner along the face. 7; and B; jump up and down along the face until they coalesce or annihilate (then
d; =0). Assume first that 7; % B; and consider the motion of T;. Two possibilities arise which are illustrated in
Fig. 5.

If 7; is a corner of a cell “sticking out” as case a in the figure then Pr(T,- jumps up | T; # B;) =0 If
case b arises then the location of Ti,; depends on whether the update of the gray cell on top of the 2-2-split
neighborhood is light or dark. But the grey cell is determined from the backward pyramid whose top it is. If the
grey cell is at the origin at time i the corners of the base of the pyramid are at (+i/2,+i/2). By the definition
of the majority voter rule the digits at these corners permute the digit of the grey cell. Hence by the assumption
(1.2) the update is light or dark with equal probabilities and Pr (7; jumps up | 7; # B;) = 1/2. Clearly T; cannot
stay put. If it does not jump up it either jumps down or annihilates with B; (and exits L, i.e. the face, moves
in). Hence Pr (T,- jumps down or exits L | T; # B;) > 1/2. The motion of B; is argued identically.

The motions of T; and B; are independent. When the jump isn’t forced (case a) the grey cells for 7; and
B; are distinct. Their updates are determined permutively in particular from the NW corners of the bases of
their respective backward pyramids. For disjoint grey cells these corners are always disjoint and by (1.2) their
digits are independent. Hence Pr (d,~+| <d; | T;# B;) > 1/4. By Theorem 2.1 d; is bounded from above. So
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Fig. 5. Jump of the top corner on the hull line.

Pr (d; =0 for a finite i) = 1. If d; = 0 the corners either have coalesced or annihilated each other. In the case
of coalescing the face L moves in, i.e. the hull shrinks in the next iterate with probability 1/4.

Unless the domain becomes extinct after the annihilation we redefine Ty and By on the new NW hull line
and iterate the argument above. By the finiteness of the island and Theorem 2.1 this needs to be repeated only
a finite number of times. Note that after a finite time interval the NW corners of the new backward pyramids
extend further to that direction than any previous ones. Therefore from then on the jumps are again independent
of the past. O

Proof of Theorem 2.5. Let us first consider the case where there is just one (outside boundary) component in
dB;. Consider the set of all 2 x 2-neighborhoods through which the boundary contour travels (i.e. splits them
evenly or divides them in 3-1). For any bounded domain this set is finite. In any neighborhood the cell in the
dual lattice at the center as in Fig. 1 is to be determined in the next iterate. In the neighborhoods where the
boundary is straight or there is a cross point the expected domain gain in one iteration is zero. At corners the
cell is part of a 3-1-arrangement. By the way the probabilities are determined in a p-voter rule the expected
domain area change at an outside corner is AA =p % —(1 —p)} = —(1—4p)/4. At an inside corner the area
contribution is —AA. So the total contribution from the contour is AAe (9B;) .

If the domain is not simply connected the contribution from the interior boundary is still computed by
recording the excess along the curve and by our choice of the traverse direction the contribution is AAe (dBiy,) .
Adding these contributions over all components yields (2.2). Note that as two contours are at least distance
one apart except at neighborhoods where there is a cross point their contributions to the total shrinkage are
actually independent. O

Proof of Proposition 2.6. If a domain has no cross points and all its n components are simply connected then
Y~ e; = 4n. Two nested contours that bound the same domain and do not have cross points have opposite
excesses. So if there are no cross points but contours are allowed to be nested also non-positive multiples of 4
are possible for 3" e;.

It is an immediate consequence of the convex confinement argument formulated in Theorem 2.1 that the
majority voter rule cannot form holes in a domain initially convex. However it can split a domain into convex
pieces. If their diamond hulls intersect there can be a cross point in which case ) e; does not need to be a
multiple of 4. But in this case the value of the expression is at least 6.

For the last statement we notice that as A; =0 is an absorbing state,
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E [Ai11] =Pr(A; > 0)E[Ai| Ai > 0] +Pr(Ai=0)E [Ai1] A; = 0]

1
=Pr(A; >0) (E[A,l A; > 0] — Zzej>
=E[A;] —cPr(A;>0),

where ¢ > 1 for convex B. Therefore {E [A;] },20 is a non-increasing sequence bounded from below. So it has
a limit and consequently Pr(A; > 0) — 0. But as 0 absorbs this immediately implies that Pr (A; > 0 i.0.) =
Pr(A; >0Vi)=0. O

Proof of Proposition 3.1. The symmetry with respect to P is a consequence of the assignment symmetry.
Recall that the map ¢ defined by ¢ ((a,d)) = (1 — a,d) commutes with the rule of the c.a., ie. for=10f,
where it is understood that ¢ as an argument in f is applied to all argument assignments (three or four depending
on the lattice). This conjugation extends to a global map: F o/ =1 o F, where I flips the assignment at every
lattice site.

Given a b-p-voter c.a. we can define the complementary rule simply by Fi_p1—p) = Fopy 01 =10 Fpp).
Applying the c.a. F(,p) and F(j_p—p) to an arbitrary configuration moves any existing contours exactly the
same way. The updated assignments of the cells in the interiors of the domains are reversed but this does not
affect the contour motion. Moreover by using the assignment symmetry we see that even this is removed in
second iterate since F,_,,_,y = (Fp,p) © 1)2 = Fippy 0 12 0 Fiopy = Fy - 0

Proof of Proposition 3.2. To locate the quasigroup rules let us first consider the case of a rule on a triangular
lattice. So we need f (S,s,53) =S for any fixed s, and s3 in S, the full alphabet. In particular it must then
hold that when varying sy half of the symbols in the image are in S as the subalphabets are of equal size.
There are two cases: 1. s, = s3 = 0. As sy is varied depending on whether it is in §© or 1, the frequency of
getting a symbol in S is either b or p. Therefore it must hold that (b+p) /2 =1/2 by the even representation
of the subalphabets. So p = | — b. 2. If s = 0 and s3 = 1 the corresponding probabilities are p and 1 —p
hence the equation for even representation in the image under fis (p+1—p) /2 =1/2, an identity. The other
choices of s and s3 reduce to these.

In the case of square lattice one proceeds the same way but now the novelty is the case of even representation
of the subalphabets in the neighborhood. If (s2,s3,84) = (0,0,1) or (0,1,1) or any of their cyclic permutations
the frequency of the image f (sy, 52, 53,54) being in SU') as s5) ranges through S is (p + 1/2)/2. As this has
to equal 1/2 the value of p is fixed at 1/2. The other case gives again b=1— p.

By Section 1 a quasigroup c.a. preserves the uniform Bernoulli measure. (]

Sketch of the proof of Theorem 3.3. We only indicate the key step in the square lattice case here.

To locate the candidates for Bernoulli-preserving b-p-voter rules one considers a 2 x 3 neighborhood and
calculates the probability of a second 0 update given one 0 update. By enumerating the different cases one
arrives at the expression

41
— — 6b+2b* 4 8bp — l2p+8p2) .

Pr(00) = — ( 5

32

A necessary condition for the uniform Bernoulli measure to be preserved is that this equals to 1/2. The line
2b 4+ 4p = 3 is the double root for the equation.

On the candidate line one then checks that if the initial distribution is uniformly Bernoulli then the distribution
of any one or two cells in the 2 x 2 neighborhood is independent of the update. Using this independence property
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on the parameter line the extension to an arbitrary cylinderset is straightforward. For the details of this and for
the analogous triangular lattice case we refer to [6]. a
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