PHYSICA [

ELSEVIER Physica D 103 (1997) 478-484 —_—
Critical growth phenomena in cellular automata
Kari Eloranta !
Institute of Mathematics, Helsinki University of Technology, 02150 Espoo, Finland
Abstract

We study a one-parameter family of probabilistic cellular automata on square and triangular lattices. Above
a critical parameter value a new dominant invariant phase appears resulting in domain growth. In the growth regime a
second critical threshold is found above which domains grow at a maximal rate (and facet). This phenomenon is shown to be
equivalent to a certain one-dimensional directed percolation problem studied by Domany and Kinzel (1984). Tight bounds
are given to the critical probabilities which depend on the lattice. These models are of special interest since their behavior
corresponds extremely closely to that of certain simple purely deterministic cellular automata.
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0. Introduction

Growth processes arise as simplified models to a
diverse range of phenomena from crystal formation to
population expansion. Broadly speaking they can be
viewed as an interaction of two phases/species with
the distinctive feature that one of them is dominant
and thereby forms expanding domains. How exactly
this expansion takes place can depend in a delicate
way from the local characteristics of the rule as well
as the underlying structure (lattice, etc.). Resolving
these questions has received a fair amount of attention
lately, see e.g. [1,6].

Our objective here is to investigate certain prob-
abilistic growth models on planar lattices. Although
the models have an intrinsic appeal due to their
simplicity the original motivation comes from the
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dynamics of deterministic cellular automata [4]. In-
deed the parallel between these models is very close
and our claim is that the results here apply almost
verbatim to the original context. We restrict to dy-
namics on two-dimensional lattices but the principles
extend to higher dimensions as well (and one is
trivial).

The models that we consider are a one-parameter
family of nearest neighbor voter-type rules. These
are set up in Section 1. After that we give an out-
line of the dynamics indicating the growth regime.
For most of Section 2 we concentrate on growth
phenomena resulting in faceting. By indicating the
appropriate percolation formulation the faceting is
then shown to happen for certain parameter values.
We also give tight numerical bounds for the crit-
ical threshold values. A partial characterization of
the dominant phase is formulated. Finally we briefly
note the connection to deterministic cellular automata
dynamics.
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1. Lattices and rules

Let Se be the square lattice Z2 and S, its dual lattice
Zz+(%, %). Denote by 7 the triangular lattice oriented
in such a way that origin is a lattice point and one of
its six nearest neighbors is at (1,0). Let T, = T, +
(0, %\/5). T, should be thought as a %-thinning of
the hexagonal lattice (which is the dual lattice of the
triangular lattice). S. is generated by {(1, 0), (0, 1)}
and 7; by ((1,0), (3v3)}.

Our two states/species are denoted by the symbols
0 and 1. Given any of the four lattices L the set X =
{0, 1}% is a set of configurations. On this we have the
natural coordinate actions, the horizontal and vertical
shifts defined by the generators.

In the case of a square lattice we consider iteration
of map on configurations F : {0, 1}% — {0, 1}% and
F:{0,1}5% — {0, 1} given by a local rule f. This
is a mapping f:{0,1}* — {0, 1} on a 2 x 2 neigh-
borhood which determines the value at the center site
belonging to the dual lattice. F is obtained by apply-
ing the rule in every neighborhood simultaneously, so
it commutes with the coordinate shifts. In the trian-
gular lattice case two maps alternate: F, : {0, 1}% —
{0, 1}% and F,: (0, 1})% — {0, 1)%. Both the maps
are given up to orientation by the same rule on a neigh-
borhood triple.

In Fig. 1 the setups are illustrated: (a) and (d) are
the lattice arrangements and (c), (e) and (f) are the
neighborhoods. Fig. 1(b) illustrates the square neigh-
borhood and the update with unit cells.

The reason for studying models in this alternating
lattice setup is twofold. First it provides a simple two-
dimensional neighborhood structure which is never-
theless quite general: any finite-to-one map f on a
square or triangular lattice can be transformed to the
square case (with perhaps more states). As the neigh-
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Fig. 1. (a) Square lattice and its dual, (b) The cell neighborhood.

and update. (c) Diamond neighborhood. (d) Triangular lattices.
(e), (f) Triangle neighborhoods for even and odd iterates,

borhood in the triangular case is even more elementary
we consider it for the sake of comparison and it in-
deed reveals some qualitatively different features. The
price for the simplicity there is the loss of isotropy
which has to be made up by alternating rules oriented
in opposite ways. Second the motivation comes from
the analysis of pseudo-random dynamics in determin-
istic cellular automata. There the key ingredient, par-
tial permutivity, can only be defined if the lattice-dual
lattice setup is used [4]. It is of interest to see how a
qualitatively similar rule behaves when this feature is
upgraded to independence as in this study.

To complete the preliminaries we have to define the
local rules. An n-m-distributed neighborhood has n
0’s and m 1’s. A homogeneous neighborhood is all-
zero or all-one and an uneven is 2-1 or 3-1 and an
even neighborhood is 2-2 distributed in any fashion.

Definition 1.1. A p-voter rule f on asquare or a trian-
gular neighborhood maps 4-0 (0-4) or 3-0 (0-3) neigh-
borhoods to 0 (1) with probability (w.p.) 1 and 2-1
(1-2) or 3-1 (1-3) neighborhoods to 1 (0) w.p. p. In
the 2-2 neighborhoods we get 0 or 1 with probabil-
ity % The outcomes from disjoint neighborhoods are
independent.

Remarks.

1. The rules simply implement an isotropic voter be-
havior. The parameter p measures the chances of
the minority to prevail. Its inverse can be thought
to reflect co-operation among the majority.

2. The rules are perfectly symmetric with respect to
the states. Moreover both homogeneous configura-
tions are invariant. Hence the measures 8y and &;
on the appropriate lattices are preserved by F, F,
and F, and the rules are nonergodic for all p. But
there are other translation invariant measures as we
will see in the next section.

2. Dynamics

The dynamics of the p-voter rules divides into three
distinct regimes in both triangular and square lattice
case. Between them there are two critical probabilities



480 K. Eloranta/Physica D 103 (1997) 478-484

which are dependent on the lattice. In this section we
elaborate these phase diagrams and in particular the
upper critical values. The low end of the parameter
range was studied in [3,4] so we only briefly summa-
rize it here.

Below the lower critical value p§ = % in the square
lattice case and pf = % in the triangular lattice case
the evolution from a disordered state seems to lead
to phase separation. More specifically we expect the
weak convergence

Flu=2a8+(1-238, 0<r<l

Here y is any initial distribution of 0’s and 1’s. Al-
though there seems to be very little doubt about this
happening, there is no proof. As a partial remedy we
know rigorously that for p = 0 finite islands will van-
ish almost surely [4].

The conjectured critical values can be justified as
follows. By considering the expected area of a single
finite island D of one phase surrounded by an infi-
nite sea of the other one arrives at the formula (again
see [4])

k
E[Ai+1|Ai >0l = A; +

ean;- @2.1)

Here A; is the area of D at time i and k is either
4 or 3 depending on whether the square or triangu-
lar case is considered. The quantity egp, is a certain
simply computable index of the boundary of D;. It is
integer-valued and for almost all domain geometries
positive. Hence p seems to determine the sign of the
drift of the area process and the given critical values
p¢ are the values at which the drift vanishes; and in-
deed simulating the rules indicates nothing to refute
this.

2.1. Growth

By (2.1) above p&. the p-voter rules should be ex-
pected to increase the area of a finite domain and
thereby serve as growth models (hence the superindex
). In this section we characterize the growth and the
asymptotic shape of an expanding domain.

To provide some intuition Fig. 2 illustrates the out-
comes of simulations in the square lattice case where

Fig. 2. Domain after 200 iterates from a single black cell in
the center, p = % % and %

a seed entry 1 was placed at origin while the rest of
the lattice is all 0’s. 1 is rendered as a black and 0
as a white square cell and the cells fill up the lattice
as shown in Fig. 1(b). The figures are results from
200 iterate runs with parameter values p = %, % and
%. Note that the frame does not represent a boundary
condition — there is none. It just indicate the maximal
size to which the domain could have grown in about
220 steps (and thereby shows the common time scale
of the three samples).

Well below the second critical level pg the shape of
the expanding domain is roundish, its boundary rough
and the underlying lattice does not immediately re-
veal its orientation. Approaching the critical value the
boundary squares off and above it the domain facets,
i.e. it has flat edges whose lengths are proportional to
their distance from the origin. Faceting is a result of
the front cells advancing at the maximal rate. Fig. 2(b)
illustrates the behavior very close to the critical prob-
ability. The faceting is monotone in the sense that the
asymptotic shape is increasingly squarish being ex-
actly a square at the limit p = 1.

An analogous phenomenon takes place in the p-
voter rules on the triangular lattice. The upper critical
value pf is different though and so is the asymptotic
shape. The expanding domain tends to a hexagon with
the faces oriented parallel to the lattice axes.

2.2. Percolation formulation

We now proceed to analyze the growth and to es-
timate the upper critical values. One should also note
that this result will of course imply the existence of a
third invariant measure which assigns nontrivial prob-
abilities to both symbols.
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Let us first consider the square lattice case. The
local dynamics is easiest to describe when one imag-
ines a diamond of sidelength 7'\/5 drawn around ev-
ery lattice point as in Fig. 1(c) and then superimposes
the arrangements on the two lattices. Suppose that the
seed diamond at origin is labeled 1 and the rest on the
even lattice is 0. Let the positive y-axis be the direc-
tion into which we consider the influence of the seed.
A p-voter rule turns the diamonds centered at (:l:%, %)
to 1's independently w.p. p. In the next iterate the di-
amonds at (&1, 1) are argued similarly, i.e. turned to
1 w.p. p if the ones at (i%, %) were 1’s. If the ones
at (ﬂ:%, %) were both turned 1’s then the diamond at
(0, 1) is turned to 1 w.p. % If exactly one of the dia-
monds at (j:%, é) was 0O then (0,1) is 1 again w.p. p
and if neither was 1 the diamond at (0,1) remains 0. In
summary the probabilistic rule of assignments in one
step to the given direction (now distance 4 upwards) is

0,00 — 0 wp. 1,
0,0), (1,00 > 1 w.p. p, (2.2)
(1, 1H—1 wp. 3.

Given the arrangement above let F; be the set of
sites on the extreme front, i.e. on the line y = %i
that turn 1 at the /th iterate (there cannot possibly be
any such sites further up). We define that a p-voter
rule exhibits extreme growth in the given direction if
Pr({F;#% Vi} > 0, i.e. with positive probability there
is always a nonempty cluster of extreme front sites.
Note that the propagation of the 1’s to the direction
under consideration can be viewed as flipping the dia-
monds around the two top edges with the probabilities
given in (2.2). If we do not erase the trail of diamonds
leading to the front, the growth problem is coverted
to a directed percolation problem. F; is nonempty ex-
actly when there is a diamond trail of 1’s of length i
from the seed to a diamond on the line.

In the triangular lattice case one needs to keep track
of the parity of the lattice but the argument is similar to
the square case. Instead of diamonds one now places
isosceles triangles on the lattice points. On T they
stand on a corner, on 7, on an edge and their size
such that superimposing the arrangements partitions
the plane.

The single seed 1 at the origin is on the even lattice
T. (time zero). Elementary geometry shows that the
front line perpendicular to the y-axis must now be

L | -
V331,
V356 -1+ 3v/3, iodd.

i even,
y =

Again it is useful to think of the front advancing
through flipping of its triangles around those edges
yielding a successor with a higher center. A triangle
on the even lattice flips in such a fashion with proba-
bility p independent of the other triangles on the front.
On the odd lattice the flipping rule is as (2.2) but now
the p-voter rule tells us that (1, 1) — 1 w.p. 1 — p.

The process can be further simplified by gluing to-
gether two triangles sharing a horizontal edge (the
lower to T, and upper on T, into a lozenge. Let the
lozenge have value 1 if the triangles that constitute it
are both 1 and 0 otherwise (0-triangle on top of a 1-
triangle or both triangles 0’s). On these lozenges we
have a probabilistic binary rule much like in the square
case:

0,0) =0 w.p. 1,
0,1),(1,0) > 1 wp. p% (2.3)
(1,1) =1 w.p. p(1 = p).

Extreme growth is formulated and converted to a
directed percolation problem exactly as in the square
lattice case. The facets to directions {%J‘C, %T(:h %zr} are
defined as above and to the directions {%Jr, %zr + %n}
from the triangles neighboring the seed. The effect
of the resulting off-set on the asymptotic shape is of
course negligible (as asymptotic shape is defined as
usual via a scaling limit).

In a pair of papers Domany and Kinzel [2] in-
vestigated directed percolation in evolutions of a
two-parameter family of probabilistic binary cel-
lular automata. The model was simply (0,0) —
0,0,1),(1,0)0 — 1 wp. py and (I,1) — 1 wp.
p2. Using transfer matrix scaling techniques they
calculated among other things the critical directed
percolation probabilities pj(p2). The accuracy of the
phase diagram has been slightly improved in later
studies (e.g. [7]).
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Our rules (2.2) and (2.3) correspond to the cases
(p1.p2) = (p. 3) and (p?, p(1 — p)). So given the
construction above we have established a rigorous re-
lation between the two growth models and the directed
percolation model.

Theorem 2.1. Both the growth models exhibit extreme
growth above a critical probability. In the square lattice
case this threshold is p§ = p|(%)‘ On the triangular
lattice pf is the pj-coordinate of the intersection of

the curves pi(p2) and pr = /pi(l — /p1).

Remarks.

1. Since a partially unknown function py (p2) of [2] is
involved, a comment is in order. Durrett and others
(see e.g. [1]) have rigorized some of the arguments
in [2] but not in the most difficult regime p; >
p> relevant to our models. In particular it is not
known whether the critical probabilities are below
one. However there seems to very little doubt that
the curve py (p2) is non-increasing and it is known
rigorously that p;(0) < 1.

2. If the expected length of the set of cells on the front
F; at time i grows linearly, the domain is said to
facet. The threshold for this is of course at least p®.
Simulations seem to indicate that the two thresh-
olds are equal. As a consequence of faceting the
limiting (p 1 1) shapes in the two growth models
are simple: square in the first case and a hexagon
in the second case with sides parallet to the coor-
dinate axes in both cases.

3. We also note that in Richardson’s growth model,
which is known to facet [ 1], the extreme growth can
be formulated as above via the Domany and Kinzel
model. However it falls to the “easy” regime p) <
p2 (py = p and pp = p or p(2— p) depending on
how the model is defined.

Numerical bounds for the critical probabilities can
be obtained at diferent levels of rigor. Loose but rigor-
ous lower bounds follow from the fact that both of the
intersection points in Theorem 2.1 are above the inter-
section pj(p2) with p; = pa. This is the critical prob-
ability for directed site percolation on a square lattice.
Using the best estimate available for it [5] implies that

0.70548< p,  0.83992 < pf.

By using the numerical results of [2,7] these bounds
can be improved with high degree of confidence to

0.73 < p¢ <0.75 and 0.886 < p; < 0.912.

The last inqualities for the triangular lattice utilize the
monotonicity of p; (p2), bounds for its intersection
with the line p; = | — p> and the estimate p;(0) <
0.83.

2.3. Third phase

By the previous analysis it is clear that when p is
sufficiently large there is a third phase which invari-
ant and in fact dominates the homogeneous phases.
By domination we refer to the motion of the phase
boundary. In this section we try to analyze this phase
and find apart from two special cases it is indeed non-
trivial.

Again there is a gap between what is evident in
the simulations and what can be proved. From sim-
ulations it is plain that there is what seems a unique
translation invariant disordered phase for all p > p&.
If it is indeed unique then by statesymmetry it must
have density of 1’s equaling % However all we know
rigorously is the follwoing

Theorem 2.2. The %-voter rule on the square lattice
and the 1-voter-rule on the triangular lattice preserve
the uniform Bemoulli (product) measure B(%). None
of the other p-voter rules preserve this measure.

Proof. Suppose that we have a B(%)—dis[ribution ina
2 x 3 cell arrangement on the square latice. Assume
that one of the updated cells is 0. By computing the
different cases one finds that the p-voter rule gives the
conditional probability

Pr(0 | 0) = 5 (4 — 12p + 8p?) (2.4)

to the other cell update. But then Pr(0|0) > 5 except
at p = % where it equals to %

For the triangular lattice we consider five cells
in a VV-arrangement and arrive at the expression
Pr(0/0) = 1¢(10—4p +2p?) which exceeds % except
at p = 1.
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The preservation of the uniform Benoulli measure
in the triangular case is an immediate consequence of
the fact that the 1-voter rule is a permutive cellular
automaton (see [4] for permutivity) hence an onto en-
domorphism of the full shift.

In the square lattice case we need to show that
given a finite index set / and the configuration on
it [a(,"j)}(;J)s, the cylinderset X; = {X|X(,"j) =
ag.jy, (i, j) € 1} is of the measure 2~!/!. For this it
suffices to show that given the I-cylinder X ¢ and
an n x n square / containing the origin we have

Pr(X(0.0 | Xn\(0,0)) = 3- (%)

To see this we enumerate the columns of / from left
toright by I;, i = 1,...,n, and the columns of the
(n+1) x (n+ 1) base of I in the dual lattice by C;,
i = 1,...,n+ 1. Suppose the origin is not in the
rightmost column of /. Then by Lemma 2.3 below,
the column C,, is independent of 7, and we have

Pr(X {0,011 X n\0,00))
= Pr(X0,01 X n\10.0yu1,))-

This argument iterated n — 1 times leads to

Pr(X 0.0 | X 1\(0.0)))
= Pr(X (0,01 X 5,\10.01)>

where i is the column where origin is located. But
along this column we argue with the first part of the
lemma and shorten the column by one at a time. There-
fore the event X{(,¢g)) is independent of the rest of X
and (x) holds. D

Lemma 2.3. Let Nj = {Xsw, Xnw, Xne, Xse} be a
B(%)-distributed configuration in a single 2 x 2-
neighborhood in the square lattice. Suppose X is
the update from it under the %-voter rule. Then any
one or two of the variables in N; are independent
of X;. More generally suppose we are given an
(n + 1) x 2 neighborhood of B(%)-distributed cells
and the n x l-update X, on top of it. Then each of
the (n + 1) x 1-columns is independent of X,,.

Proof. In the simplest case we add the probabilities
of arriving to an update 0 from a neighborhood with

at least one 0 and thereby get

Pr(Xsy = 0|X, =0)
=2Pr(Xsw =0, X; =0)
= ili('lzl = 2p)lp=ys = %

By the isotropy (on the lattice) and the 0— 1-symmetry
of the states this implies that the other conditionings
of a single cell have the same value. Hence the first
claimed independence follows. In the case of a double
from N; we have two cases to check depending on
whether the cells have a common edge but the essence
of the argument in both cases is as above.

For the last part suppose that the statement is true
for an update column of height k, X4, on top of a
(k + 1) x 2-neighborhood Nj. Let the left column of
the neighborhood be Cy. The given argument shows
that the case k = 1 is true. Let us augment the vector
Xk by one cell to a column X; 4 and the neighbor-
hood correspondingly to Ni 1. Then by the argument
above Cy41\Cy is B(%), independent of its neighbor
in Cy and the new cell X1\ Xy. Therefore the entire
column Cy 4 is B(%)—distributed and independent of
the column X4, O

Remark. The independence properties recorded above
only appear at the p-value ;,3-. Moreover even for this
rule they do not hold for triples (or quadruples) of cells
in Nj.

The result combined with the faceting thresholds
indicates an intriguing lattice-dependent difference in
the models. In the square case the dominant phase is
“ideal”, i.e. Bernoulli extremely close to the faceting
threshold. Indeed it is tempting to conjecture that the
threshold is exactly § — this value certainly is within
the errorbounds of the numerical studies. By (2.4) on
both sides of this p-value the equilibrium seems to
support larger contiguous blocks of the same phase. In
the triangular case the faceting threshold is well below
the Bernoulli case (but the same blocking tendency is
evident from Pr(0]0)).

Finally we note that there is a simple heuristic ar-
gument that gives the threshold value above. Con-
sider the rightmost cell in a half-infinite vertical facet.



484 K. Eloranta/Physica D 103 (1997) 478484

Furthermore suppose that the facet is perfect, i.e. con-
tains all the cells at the level y to the left of the corner
cell. In one iterate under p-voter rule the corner moves
with probability p 1 to the right and with 1 — p to
the left and (and % step forward in both cases). Given
a left jumps its expected length is % hence the corner
has a horizontal drift %(4p —3). So given a large finite
flat boundary piece it should grow linearly for p > %

whereas for p < % it should vanish almost surely.
2.4. Deterministic cellular automata

As mentioned earlier the models considered here
are in part motivated by purely deterministic cellular
automata. Indeed the reader has already seen them in
action — Fig. 2 was generated with such an automaton.
We briefly indicate their principle here. Further details
can be found in [4].

The random mechanism assumed in Definition 1.1
can be imitated by introducing “hidden states”. At
every lattice site the symbol O or 1 is accompanied
by another symbol, call it a digit and denote by d,
which for simplicity assumes just two values 0 and 1.
The evolution of digits is given by a permutive cel-
lular automaton and is independent of the voter rule.
A convenient choice for such automaton is local rule
dypdate = > d;(mod 2), where d;’s in the appropriate
neighborhood (square or triangular) are counted as in
Figs. 1(c), (e) and (f).

A permutive cellular automaton is surjective and
hence preserves the uniform Bernoulli measure. So if
the digits have initially B(%)-distribution then at any
given iterate they are independent of each other. This
enables pseudo-random dynamics. We can for exam-
ple tell the voter rule to let the minority win in each
4-1-neighborhood if and only if ) d; = 1. This event

clearly has probability % so the cellular automaton
imitates a %-votcr rule in this type of neighborhoods.
With other choices for the sum we can implement a
discrete range of p-values from 0 to 1. In evenly split
neighborhoods we can set ) d; = 0(mod 2) to result
in 0 winning the update. This yields the desired even
probabilities for the two symbols in even neighbor-
hoods. Note that the decision based on ) d; has the
advantage of being isotropic on digits.

The deterministic cellular automata built using these
principles do exhibit behavior extremely close to that
of the probabilistic models we have investigated. In
particular the critical behavior seems to be the same.
This correspondence is similar to the one observed in
a more general class of models in [4]. There the de-
pendencies introduced in the construction are further
studied.
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