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a-convergence via a novel block argument:

Kari Eloranta
Helsinki University of Technology

We relax the uniform Doeblin condition in the d-convergence theorem in [E1] into a milder con-
dition implied by e.g. the well known Doeblin condition. In doing this we also present a general
d-convergence theorem for processes with jump distributions being arbitrary mixtures of abso-
lutely continuous and discrete type and treat the cases of compact and noncompact statespace in
a unified way. This enhances the applicability of the theorem in extending the invariance principles

of the theory of Brownian motion.

Introduction

To analyze the stability properties of various stochastic as well as deterministic chaotic
systems a novel approach was presented by Ornstein and Weiss in [OW] and [02].
A new type of infinite-time stability called a-congruence was defined and shown to
have most of the characteristics of structural stability. Moreover it accomodates a
wider class of systems than just smooth flows and has a number of features of physical
importance that the latter lacks. Intuitively one might describe the notion as follows:
two dynamical systems are a- congruent if they are measure theoretically isomorphic
and the isomorphism moves all but a of the statespace (in the sense of measure) by

less than a.
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Stability in the sense of a-congruence has been shown to a number of systems
(sce [OW], [E1] and [E2]). When the perturbed/approximated Bernoulli process is
of infinite entropy the key ingredient in the stability analysis is the calculation of
the d-distance between the processes. In discrete time this metric is the infinite-time
generalization of the Hamming distance. In this paper we generalize this argument by
relaxing the uniform Doeblin condition of [E1] into a more explicit condition (implied
by the usual Doeblin condidition) that process. The approximating process is also
allowed to have a general jump distribution and the requirement for compactness of
the space is removed. This result is in turn easily converted into an a-congruence

statement about the indistinguishability of two systems.

1. The d-convergence

Let (M, d) be a Polish space. Let {(X]*, P")}.>1 be a sequence of stationary stochastic
processes on (M, d) with stationary distributions {A"} in P(M). We assume that for
P™a.e. w the paths of the process are right continuous and have left limits as ¢t € R
i.e. belong to D. This function space can be thought to be equipped with either the
uniform or the Skorokhod topology. In our notation PJ(T) denotes the one-dimensional
marginal and P?([0,7)) the measure on paths on D([0,T), M) that started at X, = z.
If the initial values are unspecified they are assumed to be drawn from the stationary
distribution.

By (X;, P) we denote a non-degenerate diffusion process on (M,d) that has the
stationary distribution A € P(M). Hence by tightness the process ”essentially” lives
on a compact set. By the C-convergence we mean that for any compact C C M we
have

sup | Pz(t) = Allrv = of2).
Subsequently the norm is always that of the total variation. (X, P) is assumed to be
C-convergent.

If M is compact the convergence above can be verified by checking e.g. the Doeblin

condition. The rate turns out then to be geometric the exponent being the largest non-

zero eigenvalue of the generator of X (see e.g. [F}).
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Let

T
dp(X™, X) = % /0 d(XT, X,)dt

and define the following analog of the Prohorov metric:
dr(Pp,, P.,) = infinf{e > 0] ({u] dr(X™,X) > ¢}) < ¢}.
i
Here /i is a coupling measure with marginals P7 ([0,T')) and P, ([0,T')). Finally let
d(Pr,P;,) = supdr(P}, Pp,) = lim dr(P;,Ps,).
T>0 T—o0
The last equality is shown e.g. in [O1].

The main result can now be stated.

Theorem: Suppose {(X7', P")}a>1 and (X;, P) are defined as above and that P} =
P, as z™ — z. Then d(P™,P) — 0.

Remark: The weak convergence is necessary but not sufficient condition (as shown in

[E1]).

Proof: Step 0: Choose a compact set C such that A\(C') > 1 —e. If M is compact let
C =M.
Step 1: By using the C-convergence we obtain T, such that

sup || Pz(Tu) — Al < e
zeC

Hence

sup ||Pz(Tu) — Py(Tu)|| < 2e.
z,y€C

Then choose a bounded set C', C C C' C M such that
ixelfCPz(Xt eC'Vte[0,T,)) >1—¢

Let D = diam(C"). Choose a coupling time T so that DT, /(T + T¢) < e.
Step 2: By the invariance principle PZ% ([0,T¢)) = P.([0,T¢)) if n — oo and

2™ — z. Let pp. be the Prohorov metric on the space of measures on D([0,T;), M).
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The function space is separable hence pr. (P, P;) — 0. By using Egorov’s Theorem

")
twice we get that for all § < §y and n > ny it holds that pr, (P, P;) < eif d(z™,z) < &
and z ¢ Fy, M(F1) < e. Let xMo,T.) denote the corresponding coupling measure. If
x = (z",z) € M x Fj let the coupling be independent.

Step 3: Let P be a N atom partition of C \ F; such that P;’s are A-continuity
sets of positive measure and diameter less than §p/2. Let Py = (C \ Fy)°. Also define

the following pseudonorms:

N
Imy —mallp = ) [ma(Ps) — ma(P)|-

=1

Clearly [lm; — ma|lp < ||m1 — ma|lpr < ||my —ma|| if P CP' CB.

Step 4: From the invariance principle for PJ.. and P, we can in particular deduce
that P2 (T,) = P:(T.). Hence for some n, we have ||P}(T,) — P.(Tu)|lp < € as
n > ny for all z ¢ Fp, A(F;) < e. Combination of this with Step 1 and the ordering of

the norms as above yields

sup ||P;1 (Tu) = P, (To)llp < e

z1 €EC
tzEC\Fg

Define for z; € C, z, € C\ F;

P (P:1 ([0’ Tu))apzz([o, Tu)))
= infinf{A > 0| v({w| X7 and X7, are in different

P; or one or both are in Py}) < A}

and call the optimal coupling xv7. . Since the total variation bounds the coupling error
we have the supremum of pp over the given set to be less than e. Off C' x {C \ F2} the
coupling is independent.

Step 5: Define a (Markovian) coupling on paths on [0,T), T = T, + T, from the

constructed measures by

xuﬁ).T) = /xV%u (dZ)zl/f(l]’Tc).
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We next show that this is a good coupling on [0,T') in the sense of average distance

between the paths. Now

T, 1

Tu+Tc
dr(X", X) < T2 dn, (X", X) + / d(XP, X,)dt

and we denote the first and second terms of the right hand side by I and IT respectively.
Clearly
T, .
I< T {dr,(X",C) + diam(C) + dr, (X, C)} .

From the rarity of the excursions we get that

T, i
xH{0,T) (?“dT“(X, C) > TD) = Py(d7,(X,C)>D)<e Vz€C
and by the invariance principle a similar estimate holds for the perturbation as well.
Step 1 bounds the rest of I.
In the case of bounded M the bound for II is immediate. In the general case we

first write for x € C x C'\ F;

x1{0,T) =/ +/ xvT, (42", d2). 1 1)
2€F,UC* z€UNP;

On the set E(e) = {w | supyer, 1) d(X™, X) > €} the first integral is bounded by ce
since the second marginal of v7 is absolutely continuous with respect to A and the set
F; U C¢ is small by steps 0 and 2. By the fact that the P- variation is small for the

chosen x we get that over E(e)

xVT, (dz).n 0,T.
N [ )
zeUy P;

N

= Z {/ +/ xVT, (dz)zﬂfB,Tc)}
z" ,2€P; 2" ¢P; 2€P;

=1
N
< ce/ v (dz) + ce/ e } < ce.
; { z",2€P; XY Ty " ¢P;,z€P; =0T

1

Since the average distance can not exceed the supremum of the distance we get that
dr(P, P;,) < ce. Furthermore by the choice of C' we have dr (PLL.,P\) < ce. Call a

corresponding ce-good coupling p7p.



Step 6: By induction we get a family of couplings

Hir = /#?k-x)T(dx)xl‘fB,T)-

Clearly these are again Markovian. Furthermore denote the limit coupling by uZ,.
Let us now consider the dynamical system (Do X Doo, D, 07 X 07, p7). As usual
6;’s are the shifts along paths. By a standard argument the product can be chosen to

be ergodic (e.g. [O1]). But then by the Ergodic Theorem

W), AT Xe)dt = Eng((X”,X)ow:‘T,oa))
- dr(x)pr(dx) po —a.s..
Do XDq

By Step 5 the last expression is bounded by ce. Therefore the proof is complete. |

2. Applications

Our result is directly applicable to all the cases considered in [E1]. But since the re-
quirement for the uniformity in the tail of the random walk sequence is now removed we
can in fact expect a wider range of applications. This includes sequences of dependent
random walks for which an invariance principle is known (see e.g. [EK]) as well as
deterministic dynamical systems with only a minimal amount of ”seed” randomness in
them.

We also note that all the aforementioned convergence results extend to a-congru-
ence when the product of the finite-entropy (approximating) process with an infinite-
entropy Bernoulli viewer process is formed. This enables the construction of an iso-
morphism between two Bernoulli systems. For the Bernoulliness of the billiards and

the details of the construction we refer to [OW] and [E2].
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