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Abstract

The bounded version of the eight-vertex model of Statistical Mechanics is investigated. We
study square, diamond and general finite domains on the square lattice and give exact characteri-
zations to legal boundary conditions and number of fill-ins. The sets of legal configurations with
a given boundary turn out always to have the graph topology of a hypercube with a particularly
simple edge action, This enables a simple probabilistic description of the configurations as well
as an efficient configuration generation using a cellular automaton. Finally, by invoking height
functions we study restricted edge action which leads to ice-model as well as to lesser know
vertex models, some subsets of the eight-vertex model, some not.
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0. Introduction

The attempts in recent years to extend the one-dimensional theory of symbolic dy-
namics to higher dimensions have uncovered both challenging problems and yielded
surprising successes. On one hand, there are no-go results rooted to undecidability and
on the other hand completely new phenomena that manifest themselves only trivially
in one dimension. The former stem from the theory of tilings and in particular the fun-
damental work of Berger (see [7]), whereas the latter are closely related to classical
Statistical Mechanics formulations.

In this paper we consider a well-known Statistical Mechanics model, the planar
eight-vertex model. The infinite model of immediate physical interest has been studied
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earlier in great detail [1]. Also the toral case has received attention but as it has no
boundary, none of the geometric subtleties associated with the boundary dependency
will show up there. Here we study this bounded case in finite domains hoping that the
results on boundary dependency can help to clarify the phenomena of long distance
order in this and the embedded models like the ice-model (which was analyzed in the
companion work [6]).

While our model is of physical nature, the results can be viewed as a part of a
bigger program that attempts to bring unity to the theories of symbolic dynamics and
tilings. The original impetus to this work came mainly from a group theoretic study of
polyominoes [3,11] which was later extended by others, notably in [8]. These studies
concentrated on the tileability of a finite planar region with given primitives, in these
cases dominoes or polyominoes.

It turns out that many Statistical Mechanics models can be treated in similar fashion.
Instead of tiling with polyominoes we can, for example, distribute arrows between
neighboring lattice sites according to a fixed set of local matching rules at vertices.
Models of this type include the ice-model, several color-models, the eight-vertex model
and still others, some of which appear for the first time in this paper. Through simple
coding these turn into tiling problems and again the shape of the domain can play a
critical role in determining the generic properties of the tilings.

Specifically, we consider the tileability and counting problems for the cight-vertex
model and indicate a simple but rather general way of generating all the allowed
configurations with cellular automaton. This is a consequence of a connectivity result
that seems to underlie many different Statistical Mechanics models.

Our analysis also shows that independent of the domain shape the space of finite
eight-vertex configurations has the particularly pleasing topology of a hypercube. The
final chapter analyzes the model using the concept of height. We give a natural expla-
nation why a non-trivial height function cannot exist for the eight-vertex model, but
it does exist for a number of interesting subsets thereby giving rise to ice and other
models with critical boundary dependency.

1. Setup and size

In this section we first define the model and then analyze it on two different types of
finite domains. This involves characterizing legal boundaries, solving the fill-in problem
and computing the size of the set of legal configurations.

Consider the square lattice in two dimensions, Z?. Unlike in most statistical me-
chanics lattice models the vertex models do not have any spin, etc. variables asso-
ciated to the lattice points. Instead the variables are now the arrows between four
nearest-neighbor sites.

Definition 1.1. A vertex configuration at a lattice site in Z? is legal for the eight-
vertex rule if there are either 0, 2 or 4 incoming arrows and the rest are outgo-
ing. A configuration is legal if it has an allowed vertex configuration at every lattice
site.
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Fig. 1. Vertex configurations and prototiles with muitiplicities.

(a) (b)

Fig. 2. (a) Diamond and (b) square domains.

The allowed vertex configurations are illustrated in Fig. 1. The numbers indicate the
multiplicity of the arrangement. There are eight possibilities, hence the name of the
model. Alternatively, the bumps and dents in the prototiles encode the eight-vertex rule
thereby converting a legal configuration into a tiling.

The model on the infinite Z>-lattice as well as on a finite torus has been studied
before (e.g. [1]). Both of these cases are boundaryless. In order to study the boundary
dependency we need to define a suitable finite domain and the arrow configuration on
the boundary.

The domains that we will consider first are the diamond and square which differ in
the orientation with respect to the lattice axes. The boundary arrows to be specified are
obviously somewhat different. We will first derive the counting result for the diamond
since it has the cleanest boundary condition of all domains.

N-diamond is a subset of Z? of height/width of N lattice sites. The arrow con-
figuration on it has N — 2 arrows along cach of the four diagonal sides. Fig. 2,
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left, illustrates a 10-diamond. We assume for simplicity that N >2 is even. The to-

tal number of arrows in a N-diamond is N> — 4 and the number of lattice sites

N?/2 + N. We omit the corner arrows as they are superfluous for the purpose of

fill-in.

The boundary configuration of the N-diamond, which consists of 4N —8 arrows along
the sides, is fixed. It can in principle be chosen arbitrarily but our first problem is to
solve when a given boundary configuration can be extended to a complete configuration
of the interior. To this end it is useful to partition the configuration into shells as
indicated in Fig. 2 (the boundary is distinguished by bold arrows and the next smaller
shell by light arrows).

On a shell we distinguish two types of arrow pairs. If two neighboring arrows on
the shell point to or away from the common lattice point we say that they form a
switch block and call the lattice point a switch point. If one of the two neighboring
arrows on a shell points in and one out of the common lattice point we say that they
form a neutral block. Furthermore, if the switch point is on the inside of the shell we
call the block an inside switch block and outside otherwise. These are marked with
“I” and “O”in the figure.

With these definitions we are ready to formulate a few basic observations:

(1) By the eight-vertex rule the existence of an inner switch block on a shell implies
the existence of an outer switch block at the next smaller shell. The switch blocks
share a common switch point. However, the inner switch block does not force the
type of the outer switch block: it can be both arrows in or both out.

(2) The total number of switch points on a shell must be even. Here we record switch
points in both inner and outer switch blocks. This is just a parity count—when
we traverse the shell the direction of the arrows changes at every time we cross a
switch point. Hence, when we arrive back to the initial arrow we must have seen
an even number of switch points.

(3) (1) and (2) immediately imply that if the boundary has an even (odd) number
of inner switch points, then all the inner shells must have an even (odd resp.)
number of switch points, inner and outer.

(4) The smallest shell (little square in the figure) can filled in iff the next larger shell
has an even number of inner switch blocks.

The flux across a loop around a lattice point is either 0 or +4. Loop here is a
clockwise-oriented unit square in the dual lattice (Z 4 %)2 centered at the lattice point.
A loop around a set of lattice points is a sum of such unit loops hence the flux across
it has to be divisible by four.

Consider now the set of lattice points in the N-diamond with four arrows attached
(i.e. omit the extremal lattice sites in the N-diamond). Define the boundary flux, F, to
be the flux across the loop around this set. Facts (1)—(4) imply that the fill-in shell by
shell from the boundary is successful iff on the boundary there is an even number of
inner switch points. Every switch point contributes +2 to the boundary flux. Neutral
blocks contribute 0. Hence, the fill-in is possible iff 7 is divisible by four—the same
conclusion as in the previous paragraph. This flux condition equals to the requirement
that there is an even number of arrows pointing in. Call a boundary arrow arrangement
that has such property a legal boundary.
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The boundary minus the four corner arrows is determined by its partition into in-
ner switch or neutral blocks. There are 2N — 4 of them in an N-diamond. Using an
elementary binomial identity we find that the total number of ways that the boundary
blocks can be chosen legally is

W2 (2N — 4N Jkoov—a—k _ yan—s %= (2N =4 _ jan—o

k even

Let us now examine the fill-in choices. For that purpose we number the shells from
outside in such a way that the boundary is the first shell, the next largest is the second
and so on. By the preceding argument the ith shell partitions into 2N —4i inner blocks,
switch or neutral.
The key fact that enables the counting is
(5) The locations of the inner switch blocks on a shell can be chosen independently of
the locations of inner switch blocks on other shells. Or equivalently the location
of inner switch blocks on a shell is independent of the location of outer switch
blocks on the shell.
The equivalence follows immediately from Fact 1 above. Note that the statement does
only refer to location and not to type.
Given the shell i — 1, the counting argument above slightly refined gives that the ith
shell can be chosen in

2N -4 . Fi )
2 AZ (2Nk 4i ) _ 22[\;_4,
=0,

k even

different ways. Factor 2 in front is due to the fact that besides the switch point locations
we can choose the direction of exactly one arrow on the shell.
By (5) the total number is then obtained by multiplying the shell contributions

(N/lz—ifl 2V —4i N2[2—3N+5
2 24T = 2 e s
i=2

where the 2 in front comes from choosing one arrow direction in the smallest shell
(the only choice there).
We can summarize the above as the first existence and counting result.

Theorem 1.2. An arrow configuration on a diamond boundary can be extended to
an arrow configuration on the entire set iff F=0(mod4). There are 2*"~° such
legal boundaries for an N-diamond. Each of these extends in 2 2)-3NHS yways to a
complete arrow configuration of the interior. The total number of N-diamond config-
urations is 20V'2)FN =4,

We will postpone interpreting this until we have analyzed the square domain case as
well.
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The N-square is the domain that consists of N? lattice points and 2N? + 2N ar-
rows as indicated in Fig. 2b (a 8-square). The 4N arrows that have been rendered
bold have to be specified as a boundary condition. For simplicity let N again be
even.

It is again useful to distinguish a shell. In Fig. 2b the first shell is the one marked
with light arrows. The smallest shell (the (N/2)th, here unoriented) is shown as well.
The reason for this shell choice is evident; given the boundary arrows, once we choose
the arrows on the neighboring shell a new inner boundary is uniquely determined
(the unoriented arrows on the inside of the first shell in the figure) and we can pro-
ceed inductively. As in the diamond case, in the square case, the total flux along
the arrows on the boundary, has to be divisible by four. Hence, there are total of

o keven( N )=2%""1 legal boundary conditions.

Compatible with Fact 2 in the diamond context we must record an even number
of arrow direction reversals on the shell as we traverse it once. Call the lattice points
where this happens again switch points. The location and number of corner switch
points we cannot choose as they are determined by the next larger shell. But others on
the shell we can among the 4(N — 2i) possible locations on the ith shell. Depending on
whether there is an even or odd number of corner switch points we have to pick even
or odd number of off-corner switch points on each shell. But in either case there are
the total of 24V=2) 1 <i<N/2 — 1 choices. Here we have also accounted the choice
of one arrow orientation after which the shell is completely determined. For i=N/2
(the center shell) there are two choices as in the diamond case.

The shells were chosen the given way to have the independence of the choices as
in the diamond case. Now the locations (hence also the count) of the off-corner switch
points on neighboring shells are independent. Therefore, we can compute the totality
of choices as

(N/2)—1 o
2 H 24(1\!'721') _ 2(/\/71)“.
i=1

Theorem 1.3. An arrow configuration on a square boundary can be extended to an
arrow configuration on the entire set iff F=0(mod4). There are 2"V~ such legal
boundaries for an N-square. Each of these extends in 2V ~2N+! ways to a complete

arrow configuration of the interior. The total number of N-square configurations is
IN(N+2).

Remarks. (1) Although the geometry of the domain forces a somewhat different ar-
gument in the two cases it does not alter the number of choices in a significant way.
One notes that the square domain has approximately twice as many lattice points and
arrows but essentially the same number of boundary arrows. In particular, the asymp-
totics like topological entropy agree. This quantity for a vertex model is the maximal
“uncertainty per arrow”. More formally it is

1
hiop = lJi_tgg i log({total number of M — arrow configurations}),



K. Elorantal Theoretical Computer Science 303 (2003) 539-552 545

where the domain of size M will retain its shape as its size increases (to avoid es-
sentially one-dimensional limiting shape). The theorems imply immediately the lower
bound % log 2 for the topological entropy of the infinite model. In fact, the bound is the
exact value since we are imposing no boundary condition in the last statements of the
theorems. This number is approximately 0.346574. For comparisons sake we mention
that for the infinite free model 4,,,= log 2/0.69315 and for the (more restrictive) six-
vertex model 4., =3 log §z0.215761.

(2) These results indicates a striking homogeneity in the model: all legal boundary
conditions in the given geometry have equal number of fill-ins. It reminds of the
situation to the one encountered in finite groups, the fill-ins corresponding to the cosets
of a group. Later we will see what the action generating each coset is.

(3) The results extend immediately to a rectangle standing on its corner and a lattice
rectangle.

2. Irreducibility

In this section we investigate the “perturbations” of the allowed configurations. This
yields a simple characterization of the topological structure of the set of configurations.
From it we obtain a constructive method to generate the configurations and to analyze
their probabilistic properties.

The first observation is that for each of the eight-vertex configurations we can si-
multancously reverse the directions of two arrows and the vertex configuration remains
legal. This flip at just a single-vertex configuration violates the rule at two of its nearest
neighbors. But if we reverse the arrows along any closed arrow loop—thereby forming
a disagreement loop—in the resulting configuration all vertex configurations are again
legal. Note that while this loop/path consists of arrows it does not need to be directed
as a whole.

Definition 2.1. A 1-loop is the quadruple consisting of arrows connecting four neigh-
boring lattice sites in square formation. The reversal of all the arrows in such a loop
is an elementary move.

We immediately note the useful property that elementary moves commute. Subse-
quently, the symbol for an elementary move refers to the coordinates of the dual lattice
site where it is performed.

Reversal of 1-loops connects some set of configurations. The natural question then
is to characterize this set, i.e. the configurations that can by constructed from a given
configuration using a finite sequence of elementary moves. Note that in the case of
a bounded domain with a fixed boundary, a loop reversal can never produce a con-
figuration in the other cosets as the path to be reversed cannot contain any boundary
arTows.

Call the action of 1-loop reversals irreducible on a set of configurations, C, if any two
elements of C can be transformed to each other with a finite sequence of elementary
moves.
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Fig. 3. The sweep.

The domains on which we show the irreducibility are more general than those in
Section 1. Call the connected boundary segment on the diamond edge a staircase and
call a column/row of parallel arrows, as on the square boundary, a ladder. The boundary
of a legal domain consists of arbitrary finite segments of staircases and ladders. We
assume that they are enclosing a finite set of lattice point which is simply connected
(no off-boundary loop encloses boundary arrows).

Let Dy, denote the union of unit squares in the domain with arrows on its edges,
none of which is a boundary arrow. 4 (D), the area of Dy, is a finite integer,
the area of the interior of the domain. Fig. 3 illustrates a legal domain. The small gray
squares denote those unit squares in the domain which are not free.

Theorem 2.2. Elementary moves are irreducible on any set of configurations on a
legal domain and with a common boundary configuration. They connect the 2/(Pre)
distinct configurations on the domain.

Proof. Consider two legal arrow covers of the domain D with same arrow configuration
on the boundary. Call these configurations x and y.

For simplicity we first identify all the disagreements on the two configurations. It
is easy to see that they are all on disagreement loops. The loops are obviously off-
boundary and they can be chosen to be disjoint (possibly sharing a vertex but not
an edge). The loops can be nested but we ignore all except the maximal ones which
enclose the smaller loops inside them. Note that there are no boundary arrows on the
maximal disagreement loops or in their interior because of the simply connectedness.
So all 1-loops in this maximal disagreement set can be reversed.

Call the sections of the configuration-oriented SW-NE diagonals. We compare the
two configurations lexicographically, diagonal by diagonal, and change y locally if
needed, and at the end of the comparison X and the image of y will be identical.

Starting on line L, (see Fig. 3) at the NW extremity of the domain we record from
the left to the right the agreements on the 1-loops centered on it if they are within
the maximal disagreement set. To be precise we only check the arrows on the W-edge
of each of the 1-loops (in x and y) at the same dual lattice point on the line. If no
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disagreement is found the arrows on both W- and N-edges of the 1-loops agree in
the two configurations and we parallel transport the line to it’s next location, one unit
down.

Suppose there is a first disagreement in a 1-loop on L, at the site illustrated in the
figure. Then in fact both arrows a and b disagree. This is because the two arrows
in the same vertex configuration on the previous diagonal have already been found
to agree on the two configurations. Now apply an elementary move to the quadruple
(a,b,c,d) in the configuration y. After this the N and W arrows agree at this 1-loop
in both configurations. We continue to the next 1-loop on the diagonal as long as it is
within the maximal disagreement set. Clearly, the process can be continued to the end
of the last diagonal intersecting the maximal disagreement set, after which x and the
image of y agree.

Since one sweep across the configuration suffices to connect, the argument above
implies that the domain D with the given boundary configuration has at most 2/(%=)
distinct arrow covers compatible with the eight-vertex rule. Suppose there are less.
Then there are distinct sequences of elementary moves { p;}/_; and {r;}/, (coordinates
of the sites where an elementary move is performed) such that p, - pix=r, - -rix.
Since an elementary move is a involution this implies X= p, - - - p17r - - - 11X, for some
n' <n, m' <m, where we have by commutativity canceled all elementary moves per-
formed at the same sites. By assumption p, - pir, - cannot be an identity.
Hence, the equation fails for all x and we conclude the cardinality in the statement.

(|

Corollary 2.3. The action of the elementary moves is irreducible on the set of di-
amond or square configurations with identical boundary arrows. Maximum number
of elementary moves needed for a N-diamond is N*/2 — 3N + 5, N =>4 and for a
N-square it is (N —1)*, N=2.

Proof. There are restricted 1-loops along the boundaries in the diamond case. Once
we remove them there are (N/2 — 1) + (N/2 — 2)?=N?/2 — 3N + 5 free 1-loops left
in the configuration on a N-diamond. The N-square consists of (N — 1)* 1-loops, all
free. Cl

Corollary 2.4. The set of configurations is a hypercube in A(Dy,e.) dimensions the
elementary moves being the coordinate shifts.

Proof. By the theorem the set of configurations on D with a given boundary is a
connected graph with 24(P7«) nodes. There are no self loops and each node has exactly
A(D/yee) nearest neighbor configurations reached with a single elementary move. O

Remarks. (1) The tileability condition =0 (mod4) holds for general domain as well.
However, counting the exact number of legal boundary conditions without specific
knowledge of the domain geometry seems complicated.

(2) Note that the graph diameter results in Corollary 2.3 necessarily have to agree
with the coset size exponents formulated in Theorems 1.2 and 1.3. The reason why we
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present the theorems of Section 1 as well as Theorem 2.2 is that their proofs illustrate
the independence embedded in the model in quite different ways. The argument given
for Theorem 2.2 is more robust though. It applies to various domain shapes while the
shell construction in the proofs of Section 1 becomes rather unwieldy for complicated
domain shapes.

(3) This type of connectivity result seems to hold with some generality once the
correct elementary moves have been identified. It has been shown to the ice model
[6,9], to dominoes in greater generality [10], to lozenge tilings, etc. Sometimes it almost
holds, failing in an interesting way for a small subset of “exotic” configurations [5].

The topological findings above immediately imply a simple characterization to a
generic configuration. Fix a legal domain D and a legal boundary condition for it.
Let the interior, Dy, be defined as above. Pick an arrow site which is an edge
of one of the unit squares in Dy,... Partition the set of legal configurations, C, into
subsets Cy and C_ according to whether the arrow at the selected site points up or
down (to the right or left if horizontal). Since an elementary move is a 1-1 map
and flips the test arrow in a 1-loop in Dy, containing it, we conclude |C,|=|C_]|.
Hence, if the configurations are equally weighted the probability of seeing a partic-
ular arrow orientation at any site in the interior of the domain is exactly % This
homogeneity of the configurations, i.e. lack of long-range dependency from the bound-
ary configuration is distinctly different from the phenomena observed in, e.g. the ice
model [6].

The configurations are easy to generate. Denote the set of configurations understood
as a 4 (Dy.. )-dimensional hypercube by H. Let X, be a nearest-neighbor random walk
on H with independent jumps and uniform transition probabilities. Hence, the jump to
each of the neighboring configurations has the probability 7/4 (Dj,..). The equilibrium
distribution is then of course uniform, i.e. each configuration has probability 2~4(Dsw),
Starting from any legal configuration the walk converges exponentially fast to the
uniform distribution on H. The implementation of this walk as a probabilistic cellular
automaton is straightforward. For explicit details we refer to the companion paper [6]
(and [4] for a computationally efficient deterministic scheme that can be applied to the
case at hand as well).

3. Height

A height function is an analytic device frequently useful in the context of lattice
models. Roughly speaking it is a function defined on the configurations which keeps
track of certain regularities in the configurations. The name follows from the interpreta-
tion of the graph of this function lying as a surface above the configuration. They have
been shown to exist, e.g. for dominoes (for a nice treatment of this context see [11])
and for the ice-model [2,6]. The eight-vertex model does not have a height function but
understanding why this is the case leads to further understanding of the homogeneity
of the configurations as well as to studying certain interesting subsets of them via the
set of elementary moves.
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Fig. 4. Height and weight.

Since we will consider briefly also other vertex rules than the one for eight-vertex
model, we state the defining properties for height more generally. By vertex model we
mean a model on the given lattice where specifying the vertex configurations of arrows
at every lattice point defines the configuration uniquely. Denote the set of configurations
again by C.

Definition 3.1. Height function / for a vertex model on Z? is an integer-valued function
on C x (Z+ 3)*. The value of A(x,-), x€ C changes by +1 from a dual lattice point to
its neighbor, the sign depending on the heading (left/right) of the configuration arrow
crossed.

Remarks. (1) The function is uniquely defined up to an additive constant, which is
fixed by defining the value of 4 at one point.

(2) To have a well defined function %, the value that it returns at the end of a closed
loop has to agree with the initial value. Or equivalently the value of 4 at a given dual
lattice site is independent of the path along which it is computed from the base point
(where the value is known).

Using the results of Section 2 it is now easy to see that the eight-vertex model does
not admit a non-trivial height function (a trivial height function computes height only
mod 2). Consider the arrangement in Fig. 4a. (lattice lines are bold, dual lattice lines
light, a,...,d denote dual lattice sites).

Suppose for simplicity that h(x,a)=0. The height A(x,c) can be computed, e.g.
along the two shortest paths that pass through b and d, respectively.

Consider now the path through b. The height A(x,c¢) depends on the orientations of
the two arrows along the western and northern edges of the bold square. If we now
perform an elementary move on this square these arrows are reversed and the height
at ¢ will be A(x',c)= — h(x,c) (X’ is the configuration after the move). But along the
path via d the arrows are unchanged so necessarily a(x,c)=h(x',c)=0.

The only choice in the definition of the height function is on the weights we assign
on the arrow orientations (whether an arrow pointing to the right of the height path
counts +1 or —1). Suppose that the two arrows reversed were attached to each other
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Fig. 5. Embedded vertex rules.

head—tail. Then we must read them for the height with same weight in order to obtain

the value 0 at ¢. But if they were pointing head—head or tail-tail then necessarily

h(x,c)#h(x',c), a contradiction.

The argument above can be loosely summed by saying that the reason why the
eight-vertex model does not have a height function is because the set of elementary
moves is too big. This in turn suggests some questions: Are there more restricted
subsets of this set of moves which generate interesting (say in the sense of height)
sets of configurations? Can the eight-vertex model perhaps be generated with a subset
of the elementary moves? What kind of height functions are possible? These are the
questions that we concentrate on now.

The leftmost column in Fig. 5 decomposes the set of elementary moves as stated
in Definition 2.1 into its primitives, reversals of eight distinct arrow loops. The top
row indicates all the possible vertex configurations on the square lattice with 0, 2 or
4 incoming arrows and the middle those with 1 or 3 incoming arrows. The entries in
the matrix denote the vertex configurations legal in the configurations on which the
primitive move represented on the left acts. We are not going to analyze every model
(i.e. row) in the table but rather give the principles according to which it can be done
and the entries in the matrix decided. These are indeed quite simple:

(1) Choose one of the primitive moves on the left.

(2) Determine the height function from the primitive move. This is equivalent to de-
ciding how the +1 weights are assigned to the arrows in the four different ori-
entations as the height is computed along a dual lattice path. Once this has been
accomplished the height is well defined (path independent) for the “perturbed”
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configuration if it was for the original one. Everyone of the primitive moves listed
admits a height function on the configurations compatible with the moves.
(3) Using the height single out the legal vertex configurations using the fact that height
difference around a closed loop must vanish.
Let us illustrate this procedure in a couple of cases. In order to remove the ambiguity
in the choice of the height we choose the sign convention as indicated in Fig. 4b. The
lattice arrow is again bold and the dual lattice path along which the height is computed
is light. The arrangements and their rotations indicate how the height changes when
the arrow crossing is recorded with positive weight.

Example 3.2. Suppose we have chosen the primitive action to be the reversal of di-
rected 1-loops as on the top of the column on the left in Fig. 5. Consider now the
arrangement as in Fig. 4a where the bold arrows form a directed l-loop. To have
h(x',¢)=h(x,c)=h(x,a)=0 we need to record one +1 and one —1 along the height
path @ — b — c¢. But since there is indecd one left going and one right going arrow on
the path zero will result if we record as indicated in Fig. 4b. Same obviously holds for
the three rotations of the arrangement in Fig. 4a. Hence, the height is simply computed
from increments as in Fig. 4b, i.e. weights are all +1 (or all —1).

Height increase around a closed loop must be zero. Using the height increments
of Fig. 4b around a l-loop in the dual lattice immediately singles out the vertex
configurations marked with crosses in Fig. 5, first row in the matrix.

The reader may recognize this vertex model. It is the classical six-vertex or ice-model
of Statistical Mechanics [1]. In [6] it is shown that the given primitive action connects
all the configurations (made from the six legal-vertex configurations) exactly in the
same sense as elementary moves connect the eight-vertex configurations in Theorem
2.2. (the geometry of the domain is more restricted in [6] though).

Example 3.3. Consider the primitive move on the first row of the bottom half in
Fig. 5. Arguing as in the previous example on the path independence of the height in
Fig. 4a now gives a different conclusion. The height is consistent with the primitive
move if and only if the increments of Fig. 4b (these arrangements and their rotations)
are weighted as in Fig. 4c (these weights or all signs reversed). Using this weighted
height to test the vertex configurations results in the entries on the top row of the
bottom half of the table.

The weights defining the height function are all +1 or all —1 for the directed 1-loop
reversal (i.e. ice-model of Example 3.2.) and non-trivial and distinct for the heights of
all the other seven primitive moves in Fig. 5. Note that this implies that one cannot
define a height function for the eight-vertex model even if we restrict to a subset of
the set of elementary moves (recall from the beginning of the section that the reason
height did not exist was that the set of elementary moves was too large). For example
the two primitive moves in the first two lines of the matrix admit together all the
eight-vertex configurations; yet, neither of the two height functions is well defined on
all the vertex configurations, i.e. neither extends to the “full” model. Whether a strict
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subset of the elementary moves actually generates the eight-vertex configurations on a
legal finite domain (in the sense of Theorem 2.2.) is an open problem.

By definition height A(x,a) is a Lipschitz-function in a for all configurations x.
Whenever its discrete partial derivatives in a are constant +1 in some neighborhood
of a the configuration is ordered there in some fashion. Conversely, one could think of
disordered configurations to be those whose average (in a) height increments are near
Zero.

Study of the ice-model using height indicates that the domain geometry and the
boundary configuration can influence the interior of a configuration in a drastic fashion
[6]. Constant height derivative on a boundary segment forces the vertex configuration
on a wedge in the interior of the domain. The models listed in Fig. 5 all share this
property. This is because their configurations can be mapped 1-1 to ice configurations
once the height function is known. So in conclusion we note that although the eight-
vertex model has neither a height function nor long-range boundary dependency, its
configuration set has naturally defined subsets with these properties.
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