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We investigate the dynamics of ensembles of dilfusive defects in one-dimensional
deterministic cellular automata. The work builds on earlier results on individual
random walks in cellular automata. Here we give a natural condition guarantee-
ing diffusive behavior also in the presence of other defects. Simple branching
and birth mechanisms are introduced and prototype classes of cellular automata
exhibiting weakly interacting walks capable of annihilation and coalescence are
studied. Their equilibrium behavior is also characterized. The design principles
of cellular automata with desired diffusive interaction properties become trans-
parent from this analysis.

KEY WORDS: Cellular automaton; permutivity; topological delect; random
walk.

INTRODUCTION

Topological defects, Bloch walls, or contours can be identified in a number
of standard lattice models in statistical mechanics. They are boundaries
between adjacent domains/phases and since their motions determine the
macroscopic properties of the medium to a large extent their analysis has
attained a central position in the discipline.®*'

Cellular automata (CA), being a discretized form of lattice dynamics,
are believed to share common properties with numerous statistical
mechanics models.*? While introducing some novelty and simplicity,
their purely discrete and deterministic nature also introduces combinatorial
difficulties in the analysis in comparison to the standard probabilistic
models.
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In this study we investigate large classes of deterministic one-dimen-
sional CA which exhibit surprisingly “physics-like” phenomena in the
aforementioned sense. In particular they support phase boundaries per-
forming random walks. The basic phenomenology as well as complete and
rigorous characterization of individual motions were the subject of our
earlier work.”>® Here the focus is on ensembles of interacting random
walks which either were originally present or are born {rom vacuum or
branch from existing ones at a given rate. In contact interaction they
recombine either by annihilating or coalescing, depending on their types.
We single out prototype classes of partially permutive CA where the
interaction is weak enough so that the global action is still diffusive and
analyzable. It turns out that the behavior of the CA is quite predictable
from the design. This by itself is novel in the context of CA, where com-
binatorial details often tends to erase any continuity from the parameters.
Hence it is perhaps justified to view our setup and parametrizations as
natural for the problem.

Indeed our claim is that the structures unveiled here are the very
reason why the commonly used notion “statistical mechanics of CA” makes
sense.

One could also view the results as an ideal way of generating
pseudorandom lattice dynamics. This is because by their very nature CA
are computationally extremely efficient and just seed randomness is needed
to be injected using standard algorithms.

The work is structured as follows. We first note the basic definitions
and dynamics types. In Section 2 we define the prototype classes of CA.
This involves the key reformulation of a CA rule which essentially decodes
it to a stationary process and a symbolic flow on it. In this setup the
motion as well as the branching properties of an individual boundary point
have natural characterizations. The critical permutivity property of the
underlying dynamics is then connected to some recent investigations on
Z’-actions.

In the beginning of Section 3 we present some empirical results con-
cerning the classes under consideration in the various cases involving
different birth and branching intensities. These results are then compared
with predictions of probabilistic models derived using Feynman-type path
decomposition and independence assumptions. The conservation laws
inevitable in the context of deterministic CA are then analyzed. Finally we
formulate a conjecture related to the equilibrium states of the classes. The
conjecture is connected to earlier work on simpler dynamics with stronger
assumptions. Along the way, we also discuss the dynamics resulting from
relaxing the permutivity structure, quenching the seed randomness, etc.
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1. PRELIMINARIES

The presentation here is a rather terse but still self-contained. Elabora-
tion on the basic concepts can be found in earlier parts of this paper
sequence.*®’

Let S be a finite set of symbols and X=S=8% and X" =
S = §2+172 the sets of configurations. If the left shift o is defined for any
xe X" by (ox);=x,, , then we can define our object of study.

Definition 1.1. A map f: SxS— S on neighboring symbols is a
cellular automaton rule. It commutes with the left shift and thereby induces
a global cellular automaton map F: X = X'V and F: X% - X.

Every one-dimensional CA is of this form.”’

Definition 1.2. A set S'“' < Sis called right-invariant if f(s, S'’) = §“)
for all se $'“), i.e., f(s, -) is a permutation on S, Left invariance is defined
in a symmetric fashion. If the permutivity holds on both sides, the map is
permutive on S'“.

The index in S refers to our convention that S splits into sub-
alphabets. We denote their set by 4 = {0, 1,...}. To obtain necessary closure
properties, we now make a basic assumption.

Assumption 1.3. In this study we assume that for a#a’,
SWAS“ = and S=),S“. We also restrict ourselves to the case
|S'“| =g=2, ie., the subalphabets are nontrivial and of equal size.

The assumption on disjointness implies that for any se S there is a
unique a s.t. s€ S, thereby ruling out the existence of ambiguous symbols.
However, any rule with ambiguous symbols can be naturally extended to
a rule without ambiguous symbols.'® We do not expect the size difference
of the subalphabets to introduce genuinely new interaction phenomena.

Clearly all configurations generated from a single invariant sub-
alphabet, i.e., X'“ = S* (or the ones on half-integers) are invariant subsets
of X (or X)) under F? and it seems appropriate to call them pure phases.

Definition 1.4. Given [ reAd, [#r, a configuration xe X s.t
x, € 8" for j' < jand x;, € S for j' > j is said to have a boundary point at
j+ 1/2. The set of all such configurations is denoted by S'S'"'( ).

In the case of a single boundary point (as in this definition), its motion
is under rather general conditions a random walk. The objective of this
paper is to investigate the joint motion of an arbitrary number of boundary
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points between adjacent pure phases when in the absence of others they
would be performing random walks.

The contact interaction and transformation types of the boundary
points are as follows.

Definition 1.5. Suppose that we have a boundary point [s"s"],
sWeSW retlat . If f(s), 5) e S and ce {/, r}, the interaction is inert
and the boundary point moves in the next iteration of F either to the left
or to the right by 1/2. If ¢ ¢ {/, r}, the boundary point branches and we will
have boundary points at j+ 1/2 at the next iterate. Conversely, suppose
that we have a block [s"'s'“'s'"'] centered at the site j and c ¢ {/, r}, i.e, we
have two adjacent boundary points at j+ 1/2. Then if under F this block
maps into [§'§7] and /=r the boundary points annihilate. 1f [ #r, they
coalesce into a boundary point at j.

For branching and coalescing we obviously need |4| = 3.

As indicated in earlier empirical studies,™?' it is quite natural to inter-
pret a boundary point ecither as a “particle” moving on a background
defined by a pure phase or as a “crack” between a phase and its shift. In
our setup the rype of a particle is defined by the subalphabets it borders.
This in turn defines its relation to the other particles, i.e., the interaction
algebra determining which collisions result in annihilation and which in
coalescence into a particle of a third type as well as which particle types a
given particle can branch into (see Fig. 2).

2. THE PROTOTYPES

We now define the detailed structure of the CA with the desired inter-
action properties. The two basic ideas in this description are natural
consequences of the CA being defined via a two-block rule. First by
Definition 1.1 the CA rule as we define it is equivalent to a Cayley table or
multiplication table on the symbol set S. Second this matrix naturally gives
rise to a graph which supports a simple random process, which in turn
determines all the properties of the boundary motion.'® In order to keep
things simple, we first consider some examples, after which it should be
clear how a more general class of examples is constructed.

Example 2.1. Consider the Cayley tables in TableI indexed as
matrices by S¢={1,2, 11, 12, 21, 22} on the left and S,={1,2,3, 11, 12,
13,21, 22,23} on the right.

Remark. A 4 x4 Cayley table with similar structure would be the
simplest CA to exhibit nontrivial interaction dynamics: annihilations (but
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no coalescings) between boundaries of two phases. The sizes of our
examples are chosen to enable all possible interaction and transformation
types to appear.

Both tables correspond to a CA with three invariant subalphabets as
indicated by the subsquares on the main diagonal. These are nonover-
lapping matrices by Assumption 1.3 and of size 2 x 2 on the left and 3 x 3
on the right. By examining the six off-diagonal subsquares in the Cayley
table one concludes that the left automaton has inert interaction between
the boundary points. Furthermore, their structure is such that given the
appropriate independent initial distribution, each of the boundary motions
generated is a standard unbiased random walk with iid. increments (see
Theorem 2.4). As indicated in Definition 1.5, the possible interactions are
now annihilations and coalescings. An 80-step evolution on an 80-cell torus
starting from an independent and uniformly distributed sample with sym-
bols from S; are shown in the upper left corner in Fig. 1 (time runs
downward). Here 1 is white, 11 is gray, and 22 is black and the remaining
three symbols have a slightly different shade.

The rule corresponding to the right matrix is potent: in the six off-
diagonal 3 x 3 matrices the diagonal entries do not belong to the same
subalphabets as the interacting symbols. Hence branching results at the
corresponding boundary pair. However conditioned that the boundary pair
avoids the subdiagonals, the rule again generates unbiased random walks
with iid. increments. The branching intensity (the frequency of branchings
on a typical path) is 1/3. An 80-step sample is shown on the left in the
middle row of Fig. 1 (initial configuration distributed as above with
symbols from §). The rest of the illustration is explained in Section 3.1.

In the case of multiple boundary motions a useful functional represen-
tation of the interaction of the boundary point types is the graph on the left
in Fig. 2. Here we denote S'“’ simply by a, hence aa’, a+#a’ stands for a
boundary point betwesn phases of type S and S'“’ ordered that way.
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Fig. 1. Cellular automata evolutions. Toral boundary condition, time runs downward. Rules:
Top left, «/% (see Example 2.1); top right, »/#%, b= 1/9; center left and right, .«/#%, b=1/3
and 7/9; bottom row like the middle with special initial condition (for details of last five see
Section 3.1).
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Fig. 2. Transformation of the boundary point types. Left: branchings and coalescings; right:
births and annihilations.

The graph describes boundary point generation properties. For example,
the arrow pair departing from 01 to 02 and 21 represent the branching
potential of the corresponding boundary motion. So the inert CA in our
first example corresponds to a completely disconnected graph on six ver-
tices, while the other one is functionally like the graph on the left in Fig. 2.
In the case of multiple subalphabets with different branching properties this
representation can be used in ordering them as well as finding functionally
equivalent CA. Transversing the same arrow pairs in the opposite direc-
tions gives the recombination of types in coalescings. The graph on the
right in Fig. 2 is a similar representation of another phenomenon, spon-
taneous birth, in the case of two noninvariant subalphabets (for definition
see end of this section).

We now generalize these examples and formulate the classes of
automata on which we concentrate for most of the paper.

Let each se S be represented by s=(a, d), where de D. We call D
the set of digits. By Assumption 1.3 we can choose D= {1, 2,.., ¢}. Let

A = {A(".a’)}(a,u')eA x A and Q . {Q(”'u‘)}(a.a‘)eA x A

where A'““) are gxgq matrices whose entries are in A. The array
A:AxAxDxD— A is called the assignment matrix. Q) is a gxgq
matrix with entries in D, ie. it is a Cayley table on the set of digits. For
simplicity we will subsequently consider the case Q'““’=Q unless
indicated otherwise.

With these definitions the rule of the CA is given by f=f(4, Q) such
that for s=(a,d) and s'=(a’, d") -

f(s,8') = (4" (d, d), Q" (d, d"))

So if, for example, A‘“““)(d, d’)e {a,a'} for all a, a', d, d’, then the rule is
inert, whereas if we have ¢ for some a, a’, d, d’ the boundary between these
symbols will branch. Note that the invariance of the subalphabets implies
that 4““Yd,d")e A for all a, d, d'.

The idea behind this formulation is the following. If we have a
way of guaranteeing that the digit pair (d, d') in the boundary pair (s, s') =
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((a,d), (a',d")) is uniformly distributed in D x D, then with the assignment
matrix we can, in a simple fashion, control the motion of the boundary
point as well as its branching.

To ensure the desired distribution property for (d, d’), the Cayley
tables Q*“’ must have a special structure.

Definition 2.1. A Cayley table Q on the set D is a quasigroup if in
the equation Q(d,, d,) =d,, d;e D, any two digits uniquely determine the
third.

The quasigroup structure obviously implies the permutivity of f on the
subalphabets. A quasigroup does not need to be a group, nor does it have
to have an identity. In the subsequent analysis we assume that Q is sym-
metric, which does not restrict us to groups, but makes certain arguments
more transparent.

To generate the random walks, we introduce a random component in
the form of the initial distribution. The notations pg and u, denote the
uniform Bernoulli (product) measure on S% and D?, respectively. Let the
measures on the Z + 1/2-lattice be denoted analogously with superindex
(1/2). The mechanism responsible for propagating the randomness to
future iterates is a certain Z?-action which we now describe.

Let P be the global CA map that the permutive rule Q induces on the
configurations generated from D. It preserves the appropriate measures,
ie, up=uYPP-1 ie., the D% sequences will remain independent and
uniformly distributed under P. The set of all possible infinite space-time-
evolutions of P is a subshift of finite type which we denote by D®. Let its
horizontal and vertical coordinate shifts be a, and o,. The former is defined
by (6, ¥)n =Y+ YEDP, and the latter by (6, )= Y +12i4 10
ye D@, Together they define a ZZ?-action ¢/ by (j,i)—0o}o,. By
taking into account the measure preservation we obtain a dynamical
system (D@, ¢, u®) (the inverse limit"*).

Theorem 2.2. The Z’-action is mixing, i..,

lim @ (g"“/(4) " B)=pu?(A4) 4?(B)

[il + 1] =

for any measurable 4, Be D%

The theorem has appeared in various forms, e.g., in refs. 12, 11,
and 16. The interesting question from our point of view is whether the
mixing property is good enough—will the underlying digit evolution which
determines the jumps of the boundary point produce sufficiently weakly
interacting motions so that they will retain their random walk character?
We claborate this question throughout the rest of the paper.
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We are now ready to define the prototype assignment matrices and
thereby the CA. Let ¢ be the cyclic permutation O+ 1+ 2+ 0.

Definition 2.3. Suppose [A|=2or 3 and |D|>2iseven. Let 4*"
be symmetric and such that half of each row is 0’s and half 1I's and let
A0 = 40D 1f | 4] =3 define the rest of 4 by

AP G d')=¢(4"(d,d")), i=1,2, Vd,d'eD

By letting Q'““? = Q, we define a class of symmetric CA rules which we call
AE.

Remarks. The name refers to the fact that for |4| =2 these inert
CA are capable of generating annihilating random walks and in the case
|A] =3 also coalescing ones. A checkerboard covering with 0’s and 1’s is a
natural choice for A®". Note that by the symmetry of 4", A is sym-
metric, i.e., A““Nd, d')=A"“"“)d’, d), hence by the symmetry of Q, f also
is symmetric. The matrix on the left in Table I is an example of %
(O0=7Z, and A" a checkerboard).

The class generates good individual boundary motions. Let n, and =,
be the projections of a measure on X on A% and D%, respectively.

Theorem 2.4. Let the measure p be a measure supported on
SOSM (o), jo an integer or half-integer and m,u=pu,. Given a rule in
A€, the boundary point performs an unbiased random walk with i.id.
increments and unit variance 1/4.

Proof. Without loss of generality we can choose |4| =2. Suppose
that the defect at time 7 is at j,. Consider the triangle T’ with vertices at
(Ji, i+ 1)and (j, + (i + 1)/2,0). Define the backward cone of the boundary
pair centered at j, at time i/ to be the set T\{(j;,i+1)}. The past
of the walk at time 7 is clearly contained in this backward cone and
the cone determines the next jump, i.e., value of the cell at (j,i+1).
Suppose that the walk jumps to the right, ie., the cell at (j,i+1) is
in $®. We claim that given the backward cone at time i, the value of
the neighbor at (j;+1,i+4 1) is determined permutively by the entry at
(J;+ (i+3)/2,0). This follows by noting that as (j,+ (i + 1)/2,0) is now
fixed, (j;+ (i+3)/2,0) permutes (j;+ (i+2)/2, 1) and then iterating this
argument 7 times. So the next jump is independent of all the previous ones.
Moreover, as the digit at (j,+ (i + 3)/2, 0) is uniformly distributed, so is
the digit at (j;+1,i+1). By the column structure of 4‘*" in /¥ the
jumps to both directions take place with probability 1/2. Therefore the unit
variance is simply 1/2(—1/2)* +1/2(1/2)*=1/4. R
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Remark. More complex f arrays can be dealt with using a graph
formulation.® In order not to obscure the main points, we refrain from
defining the most general analyzable classes here.

Definition 2.5. Suppose |4| =3 and |D| =2 is odd. Let the set of
branchings B= {(d,d")| A'®'(d, d")=2} be symmetric with respect to the
diagonal of A'%" and contain it. Moreover, assume that the set B intersects
each row at an odd number of entries. Let A‘“!) be antisymmetric off B,
ie.,

[(490(d, d"), ANd', d)} = {0,1}  for (d,d')¢B

and let half of the elements on each row in the complement of B be 0's (and
half 1's). Let 4“9 =A4©"" The rest or the submatrices and Q are
generated as in .&/%. This class of CA is denoted by «/#%. The branching
intensity of the boundary motion is b =|B|/¢.

Remarks. Note that again the rule f, i.e., the full Cayley table, is
symmetric. Conditioned on not branching, the motion of the boundary
point is as in Theorem 2.4. From the fact that (d, d") is uniformly distri-
buted in D x D and from the structure of 4'®"" it follows that the branching
rate is simply the density of B in the off-diagonal submatrices. The matrix
on the right in Table I is an example of a rule in /2% (Q =17, and the
branching pairs B are on the diagonal in each 4'““", a#a’).

In principle the class o/ %% can be used to generate arbitrarily potent
random walk ensembles.

Proposition 2.6. Given any be (0, 1] and &> 0 there exists a CA
in &/ %% such that its branching rate is within ¢ of b.

Proof. For a given b pick ¢ a multiple of 3 and such that 1/¢ < b and
8/q* <e. Form a 3gx3q Cayley table in o/#% such that in 4'“" the
diagonal branches and the rest is an asymmetric checkerboard of 0 and 1.
For this rule b=1/g. To build a rule with larger b, start filling in the
branching entries (in each 4'““", a# a’, i.c., staying in &/ #%) first around
the diagonal symmetrically, each time adding 6/¢”. Once this is completed
(in ¢/3 steps) continue flipping the remaining entries to 2 symmetrically in
pairs of 2 x2 squares, thereby increasing b by 8/g” at a time. Once only
overlapping squares can be placed, add them in a symmetric way so that
they cover one 0 and 1 in each row and column. This can be continued up
tob=1. |

There are by no means all one-dimensional CA that generate good
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defect gas dynamics, but rather prototype classes. It is perhaps appropriate
to motivate some features by unveiling the “physical” ideas behind them.

The basic physical assumptions we implemented in the prototypes
were:

(i) Isotropy, i.e., left-right symmetry of the interaction between the
subalphabets.

(ii) The boundary motions should all be statistically identically iden-
tical and only their types should differ.

(iii) The individual boundary motions should be unbiased random
walks with iid. increments (and hence Markovian) and their character-
istics, such as variance, branching rate, etc., should be computable.

As noted in the remarks, all the tables are symmetric, hence (i) is
satisfied. Since all the interaction matrices between two subalphabets
A9 asa', are generated from a seed table 4> as elements of the orbit
under the permutation ¢, they will be equivalent in branching and inter-
action properties. Of course we see this more directly from the proof of
Theorem 2.4, which also shows that the choice of the distribution of 0’s and
I’sin A" in our classes guarantees a random walk of the type (iii). Note
also that the permutation applied to the graph on the left in Fig. 2 yields
an isomorphic graph.

Before claborating on the dynamics of the CA we will note one addi-
tional feature of our design. By the invariance of the subalphabet $'“ the
diagonal assignment matrix 4‘““ is constant. The violation of this, i.e., the
existence of submatrices in the diagonal with 4'““’ (d,d’')+#a for some
(d, d"), amounts to the appearance of spontaneous births of twins, i.e., births
of adjacent boundary points. The subsequent motions are of course still
defined by the off-diagonal assignments together with the underlying digit
dynamics. Since the diagonal blocks 4'““’ are not contributing to the
characteristics of the boundary point motion, the distribution of the non-a
entries is not relevant and the birth intensity is just the density of these
entries in the submatrix. A prototype class, which we call .«/% (and could
perhaps call Ising) exhibiting this phenomenon can be defined as follows:
Suppose that |A4]| =2, |D| is even, and that off-diagonal assignments are
as &/%. Let both matrices 4'““’ have density b of entries in the other sub-
alphabet. Furthermore assume that at »=1/2 the branching entries are
distributed in such a fashion that the Cayley table becomes a quasigroup,
i.e., every symbol appears on every row and column exactly once. This
special condition will show its naturalness later. At this point we motivate
it only by noting that the CA in class .«/ %% are defined in a similar way—
at b =1 their Cayley tables are quasigroups.
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3. DYNAMICS

We now present the analysis of the classes &€, o A%, o/ %, and some
of their more general relatives which all satisfy Assumption 1.3. Their
dynamics as it appears in simulations is first briefly reviewed. After that we
compare it with appropriate probabilistic models and note the conserva-
tion laws involved. The equilibrium properties pose some interesting
problems which we report at the end.

3.1. Simulations

A series of computer simulations was first performed to confirm the
qualitative behavior of the CA in the three prototype class as well as some
rules outsides them and to measure the dependence of the dynamics on the
parameters. The programs were written in Mathematica and run on a
NeXTstation. In most simulations a toral universe maximum of 1000 cells
in perimeter was initiated using a pseudorandom sample from an inde-
pendent and uniform distribution on X. The length of the run was dependent
on the birth/branching intensity—the lower the value of b, the longer the
transient before equilibrium was attained. The range of runs was from 1000
to 9000 iterates. Although the backward cones of course start overlapping
eventually, the long runs did not seem to reveal noticeable dependences
due to this.

The critical finding was that the underlying quasigroup structure is a
sufficient condition for random walks to retain their qualitative and quan-
titative properties in the presence of others. Our observations also strongly
point toward it being a necessary condition. In its absence the random
walk paths tend to corrupt to piecewise rectilinear motions, which indicates
the existence of a measure concentrated on unidirectional cycles in the
nodegraphs.®” The asymmetry of the underlying quasigroup(s) as well as
the constancy of Q'““’ seemed irrelevant as anticipated. The assumptions
on the assignment function 4 guarantee a simple (Markovian) structure for
individual walks and this seems to be preserved for ensemble in the quasi-
group case. The cardinalities |D| and |A| contribute as expected. The
former influences the smoothness of the paths (the expected length of
unidirected boundary pieces) and the latter just the number of boundary
types available.

To illustrate the dynamics we have included some generic samples in
Fig. 1. The top four represent 80 x 80 evolutions from fully disordered state
(us) on a toral universe. They are ordered from top left to middle right
according to increasing branching rate, 0, 1/9, 1/3, and 7/9 respectively.
The rules with =0 and 1/3 are the ones introduced in Example 2.1. The
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former is in &% and the later is in «/%%. All the branching rules have
Q =Z5. The rule with rate 7/9 is also in &/ %%, while the one with b=1/9
is just outside it (|D| =3 implies b= 1/3 in o/ B€——apart from having two
nonbranching entries on the diagonals of A'““", the 1/9 rule satisfies the
conditions in &/#%). The qualitative properties of the evolutions for
automata with other values of b can be directly interpolated/extrapolated
from these.

In the bottom row of Fig. 1 we have a second sample of evolution for
b=1/3 and 7/9 to further illustrate the domain formation in the branching
case. The initial state is such that exactly two defects are present in
otherwise disordered phases (i.e., probabilities on symbols within each sub-
alphabet are uniform Bernoulli). By averaging over an ensemble of such
branching trees for a given b value one concludes that the boundaries drift
out at the correct rate b/2.

3.2. Probabilistic Analysis

The previous observations clearly suggest the existence of an attractor
for the inert class .«/% and a nontrivial equilibrium measure for /%% and
/2. The structure of the attractor (candidate) is fairly easy to guess, as we
will see, but to build a case for the latter we performed a series of runs
cumulating data on the defect/particle density in a configuration and on
the interparticle distance. These show a remarkably coherent picture under
A and Q variation. We now present these findings along side an inde-
pendent model.

Our model is defined on the same configuration spaces as our CA
(X and X'"?) alternating). Consider four adjacent lattice sites. As usual, if
neighboring cells are in different subalphabets, there is a defect between
them. Suppose that the defects are independently and uniformly distributed
with density (frequency) p and that the center boundary is a defect.
Assuming that all defects (at most three in our block) move to the left or
right independently with equal probabilities and branch independently with
probability b, we compute the number of descendants of the center defect
in one iterate. By including all possible defect interactions within the four-
block, we essentially compute a Feynman diagram and as a result get the
density of deaths and births per lattice site as functions of the branching
intensity and density of defects. In the steady state the densities of births
and deaths have to match. The equilibrium solution of the defect versus the
branching intensity is illustrated on the left in Fig. 3. See Appendix for
details. The graph has several notable features, one of them being the fact
that the value at b= 1, p=2/3 is exact. This is a consequence of fact that
this CA is permutive, thereby preserving the uniform Bernoulli measure.
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Fig. 3. Equilibrium densities in the independent models corresponding to .o/ 4% (left) and
o/ A (right).

Hence the underlying independence assumption is satisfied. At =0 there
is no mechanism to counter annihilations and coalescings and the
asymptotic density should indeed be 0. Note the almost linear dependence
on b at small values.

The graph corresponds with reasonably good accuracy to the data
from CA runs. At large values of b the equilibrium particle density is very
close to the value given by the model. At b values in (0.1, 0.6) the observed
densities are within 5-15% of the ideal values. This seemed to hold for all
sample CA independent of subalphabet size, quasigroup, and the particular
distribution of the entries in the assignment function in .«/%%. Even all
examined assignment functions generating unbiased or minimally biased
non-Markovian boundary motions (e.g., symmetric checkerboard off-B in
A"V in the branching case implies bias) given similar agreement with the
model density p(b). In the (0, 0.1) range the transient times made the
density estimates less reliable, but there was nothing to indicate vanishing
of p(b) for some positive b, i.e., the existence of a nontrivial critical b value.

An obvious source of error is the fact that if two boundaries are at dis-
tance one from each other, then the probability that both branch may
exceed b2, the value in the independent case. This follows from the
boundary pairs having a common digit. The mechanism does not plague
boundary pairs further apart.

To see the basic phenomena in the case of births instead of branchings
we only need to consider the interaction of two subalphabets. The ideal
case involves the same independence assumptions as above together with
the assumption that the cell boundaries in pure phase give rise to births
independently with intensity b. Again the equilibrium density is exactly
solvable (see Appendix). Its graph is shown on the right in Fig. 3. Since
flipping of a fraction b of the cells in a given pure phase is equivalent to
flipping the fraction 1 — 5 in the opposite phase, we see that the density

must be symmetric with respect to b= 1/2. At small values, p(h)~2 \/B
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The singularity of the derivative of p at 0 and 1 makes the comparison of
the model to CA with birth mechanism somewhat unreliable at low and
high birth rates. However, at the midrange of (0.2, 0.8) the observed match
is comparable to that of the branching midrange. At the special value
b= 1/2 the model is exact with p=1/2.

The interparticle distance at the equilibrium gives more detailed
information about the stationary measure. It also indicates the non-
Markovianity (with respect to the spatial shift o) of the measure when it
is nontrivial, ie., for parameter values »#0 and 1| for /%% and also
b#1/2 for &/#. In Fig. 4 we plot the logarithm of the density of the dis-
tance distribution versus the interparticle distance at three different b levels.
These are 1/3, 5/9, and 7/9, the first corresponding to the shallowest and
the last to the steepest curve. Over one million defects were recorded for
each curve and the tail of the distribution was cut at sample level one or
at distance 40. The b values 1/3 and 7/9 correspond to the rules explained
in Sections 2 and 3.1 and the third has the same quasigroup and with
symmetric distribution of branchings in each A'““' as required for the
class o/ #%. Again we believe that the forms of the graphs are generic, i.e.,
essentially independent of Q, etc.

These data clearly indicate the non-Markovianity of the equilibrium
measure. Suppose that the projection of the equilibrium measure on its first
coordiniate, i.e., sequences in 4%, is ergodic and Markovian (with respect
Lo the shift ). If p, denotes the probability of a contiguous block of length
n of any symbol from A (i.e., the probability of having two defects n apart).
then p,=p(1 —p)". Here p is as before

Pr(defect at site j— 1/2) = Pr(s, ¢ S | 5,_, € ')

14

12

[
(=

log density

10 20 30 40

distance

Fig. 4. Equilibrium interparticle distance distribution for .«/#%. Branching rates correspond-
ing to the curves, shallowest to steepest, h=1/3, 5/9, and 7/9.
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for any subalphabet a. But then the logarithm of the distance density
should be linear, which does not seem to be the case (see Fig. 4).

The graphs suggest superimposition of at least two component dis-
tributions. For b near | an exponential distribution dominates. In fact at
b value | the interparticle distance is exactly exponential (as a consequence
of the rule being permutative, hence Bernoulli measure being preserved). At
lower b values large contiguous blocks of pure phase will emerge and when
they do they will persist for some time, thus contributing to the distribution
the component so notably absent in the b= 7/9 graph.

The non-Markovianity of course points out a shortcoming in the com-
putation of the densities in the beginning of the section. The independence
assumption on the defect distribution is likely to have contributed to the
deviation at low b values.

3.2. Conservation Laws

The main difficulty introduced in the transition from probabilistic
particle systems to CA is that of conservation laws. They typically restrict
the CA from having higher-order mixing properties, exponentially vanishing
correlations, and similar useful properties. We now proceed to investigate
these laws in our CA with the special goal of trying to understand why
their total contribution to the dynamics does not seem to be proportional
to their number.

The nature of the digit-level conservation laws can be best understood
by considering the basic case of Q =Z,, p prime. Any single nonzero digit
g at the origin surrounded by identity on Z U Z, generates a Pascal’s
triangle modulo p rooted at g on the top. This set will contain rows having
just two g's in them at heights (measured from the top) p*, k=0.
Moreover, these triangles for arbitrary root digit can be superimposed, i.e.,
added mod p. Hence for any j and any #, k>0 it holds that

Q(d(/.i)a d(j+p".i]) . d(j+p"/2‘i+p")

Indeed the existence of this dependence is the reason for the digit evolution
not being three fold mixing.">'" Note that although there is an infinite
number of these laws, their size (p*) increases exponentially and requires
the given exact geometric arrangement to prevail.

If we consider time and distance /# p* we arrive at a more com-
plicated dependence relation involving also some of the digits between d;;,
and d;, ;. This is a consequence of the fact that Pascal’s triangle rooted
at such digits can be nonzero at (j+//2, i+ 1). But the density of any
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Pascal’s triangle (in the forward cone) vanishes as its height approaches
infinity. Hence also these conservation laws are rare for large /.

The argument given here actually extends to other cyclic groups and,
for example, to the Klein four-group. In the latter all nonidentity elements
are of order two, so the argument for Z, applies. Indeed loops, i.e.,
quasigroups with identity, are argued similarly.

Since our primary concern is the boundary motions we would like to
know whether there are increment-level conservation laws. By this we mean
relations between the increments (jump directions) at distinct boundary
points. This does not seem to happen in general, but it is possible that a
digit-level conservation law lifts. The case in point is Q = Z, and an assign-
ment as in class &/¢. Consider an arrangement of boundary pairs centered
at (j, i), (j+2%i) and (j+2% ', i+2%). The reversal of the increment,
say, at (j+ 2% i) is caused by permutation of the digits in this boundary
pair. But any such permutation also permutes the digits of the boundary
pair at (j+2%~", i +2%) (the third pair is fixed). Hence there is a permutive
relation between the increments in three different locations. However, this
relation breaks down for bigger Q’s, since the permutation does not lift
from digits then. And it does not seem to make CA with quasigroup Z,
behave noticeably differently.

The conservation laws seem to cause significant consequences only if
the CA is computed on a toral lattice of the wrong size. To see this,
consider again the digit evolution in the case Q =Z,, p prime. Let d, be the
density of nonzero digits in the ith row of the Pascal’s triangle. Drops in
d; happen at time (heights) p, 2p...., p?, p>+ p,..., p°,.... From the structure
of the Pascal’s triangle we see that large decreases in the density occur
when for some k> 1, i/p* is a small integer. Indeed if i is a power of p, d,
is close to zero, as there are exactly two nonzero entries on these lines (the
case considered in the beginning).

A consequence of this is that if the perimeter of the torus T equals p*
for some k the digit evolution from any initial sequence is identically zero
from time i = p* on, as the two digits alive in a Pascal’s triangle rooted at
any point of the initial configuration cancel each other. More generally, if
p* for some k is a big divisor of T, the density fluctuations in the digit
evolution are further amplified from the nontoral case. These torus sizes
should obviously be avoided.

3.3. Equilibrium

In view of the design principles of the CA classes as well as the results
above we now venture to formulate the equilibrium behavior of the
automata as well as the convergence to it.
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A deterministic CA typically has multiple invariant measures. The
simplest of the singular ones are supported by periodic points. Apart from
a few exceptions, these seem in general have a vanishing basin of attraction
and therefore are not of physical importance. If a rule has a nontrivial
invariant subalphabet, the uniform Bernoulli measure on it is an invariant
measure.®) Very little seems to be known about any other types of
invariant measures.

Once the trivial singular measures are excluded we expect the
invariant measure characterization in our setup to be as in analogous
classical statistical mechanical models. The omission is made by requiring
that =, u is absolutely continuous (recall that given a measure p on X, m, 4,
is the coordinate projection on DZ%). In the remaining set of measures we
expect the rules in /% to be nonergodic and the rules in &/# and o/ B%
to be ergodic. Note that since the class /(%) can be viewed as the limit of
the class ./ as the birth rate approaches zero, the ergodic behavior is as
in the none-dimensional Ising model.

To be more precise, we define two properties of good initial measures y:

(i) p=ppuxpp.
(ii) p(x) >0 for u-almost every x, where p stands for defect density.

Assumption (i) guarantees ideal digit dynamics, i.e., stationarity and
maximal obtainable mixing, and the product form allows arbitrary defect
distribution. The initial distribution of perhaps the main interest, the
independent uniform measure on all symbols ( i), clearly satisfies both con-
ditions. However, it may be of interest to also consider “quenched/enhanced”
initial measures where the defect density has been altered within (ii).

Let 4 be the uniform Bernoulli on $“* and recall that the weak
convergence of measures u' = u* just requires | f du’ — [ f du* for bounded
and continuous f. We let F'u stand for the measure defined as (F'u)(4) =
w(F~'A).

Conjecture. For every Fe /% and initial measure p satisfy (i),

Fz’lﬂ=>ﬂ*= Z /1(")}1(“)

ae A
for A2>0 and 3 A“? = 1. If u also satisfies (ii), then

PN~ s eas

where ¢ =|A4|/2+¢, |e| small.
For every Fe o/ B% there is an equilibrium measure u* (F u* =p*)
such that F?"u=>u* for any u satisfying (i) and (ii). For 0 <b<1 it is
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a non-Markovian measure (with respect to the spatial shift o) with equal
density of subalphabets and with defect density in (0, 2/3).

For Fes/# and be(0,1/2)u(1/2, 1) there exists an equilibrium
measure u* such that F*'u = u* for any u satisfying (i). The subalphabets
appear with equal density and the defect density is in (0, 1/2).

Remark. The analogous statements obviously should hold for odd
iterates, but we refrain from spelling them out, to avoid the extra indices.

Several points are in order to motivate and support the Conjecture.
We also want to connect it to finding elsewhere.

The attractor in the class /% should simply be 4*={),_, S‘”". The
weights 2 and ¢ in the Conjecture reflect the representation of the
subalphabets in the initial measure, i.e.,, nonergodicity. In the even case
(e.g., pus) one expects A''=1/|A4| and c~3/2. The latter assumes equal
probabilities for annihilations and coalescings in recombinations. In case
just two subalphabets are present, only annihilations take place and c~ 1.
Experimentally the bound for deviation ¢ is very small but hard to estimate
reliably because of the slow convergence. Even in the case of biassed
random walks the attractor should still be contained in A* and the limit
measure be of the given form. Due to the (standard) topology of the space
(X, d) and the expected recurrence of the boundary motions the attraction
is only in the mean, ie., (1/n)X"_) d(F*x, A*) -0 p-almost surely [use,
e.g., the metric d(x, x)=0, d(x, y)=2"mrlillx#x} on X7

For independent annihilating walks with independent exponentially
distributed jumps a related result has been proved and should match our
special case of two subalphabets.”"® If the sequences from D* under itera-
tion of P were independent of each other a similar approach should work
here. But by Theorem 2.2 the digit sets are just asymptotically independent.
Indeed they are not 3-mixing, because of the conservation laws, but
nevertheless the mixing rate is quite good and the resulting correlations
(and length scale) are extremely small.

We also note that the first part of the Conjecture is closely related to
Lind’s conjectures on the elementary cellular automaton 18."* The rule 18
has permutivity properties completely explaining the individual random
walks observed and the collective behavior scems to be that indicated in
the Conjecture.”* Indeed 18 has a quasigroup structure much the same as
the rules in class &/%. To see this we present the Cayley table of 18 on the
left in Table II.

The coding is 0=00, 1=01, etc, in terms of the original binary
alphabet. The invariant subalphabets are S$"'={0,1} and $* ={0,2}.
Clearly f(s",s?)el,s''eS“. If the order of the subalphabets is
reversed, we can get the symbol 3, but this is a redundant symbol. Its
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Table Il
0 1 2 2 0o 1 0 2
1 0 0 0 ? (1) é 1 0 1 0
2 3 0 0 ‘I 0 1 0 2
1 0 0 0 2 0 2 0

appearance is avoided if the coding is started at odd location of Z instead
of even ones. So the defects in 18 behave as in the CA with the table in the
center. Furthermore, the ambiguity in the symbol 0 can be disposed of by
defining a new symbol O for S (this has no effect on the defect dynamics).
The resulting table is on the right. The underlying quasigroup is clearly Z,.
Although the assignment function is not as required in .2/%, the subalphabets
are evenly represented in 4»? and A" and an unbiased Markovian
random walk prevails from the natural initial measure (as in Theorem 2.4).

The branching/birth mechanism in </ #%/«/ % makes the existence of
a nontrivial equilibrium measure intuitively obvious. Note that because of
the types of its offspring, a branching boundary cannot ever self-annihilate
to extinction.

The nontrivial structure of u* conforms with earlier finding where the
inert annihilating case with all independence assumptions was studied."’
There it was shown that the defect distance at time » scaled by \/ﬁ does
not converge to an exponential limit distribution. This corresponds to our
finding on the increasingly non-Markovian nature of y* in the limit 5 — 0.

Finally we remark that the cases b=1 for &/%#% and b= 1/2 for A4/ %
are left out of the Conjecture since they are the only ones fully understood.
The Cayley tables for these parameter values are quasigroups, the uniform
Bernoulli measure on all of X is preserved, and the natural extensions of
the CA are Bernoulli, i.e.,, maximally chaotic. Because of the measure
preserved, the interparticle distance is exponential with mean 3/2 in /%%
and 2 in /2.

APPENDIX

The reference models of Section 3.2 assume that all the probabilistic
mechanisms in the ensemble are independent of each other and of the past.
So the increments of the defects are independent of the past of the ensemble
and independent of each other up to the time of annihilation or coalescing.
Similarly the branching or births are independent of the past, each other,
and the increments.

Let p be the density of defects. With probability p we have a defect
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at any given site. To obtain the density of defects after one iterate we
consider a block of four cells centered at a defect. In the case of /%A% the
defect can jump by +1/2 or branch. The offspring may annihilate or
coalesce with neighboring defects if any are around. We compute the
expected number of offspring by the center defect in one iterate after its
interactions have been taken into account. For example, if in the case of
three defects the center defect branches, the others move inward, and one
of the children coalesces while the other annihilates, the number of off-
spring is 1/2 (as the child is parented by two defects). Given the density of
defects, we can calculate the probability of this event to be p*b(1 —b)?/8.
Note that the center defect could not interact with any nonneighboring
defects in one iterate. Accounting for all possible events gives the updated
defect density, which has to agree with p at the equilibrium. The argument
can be further refined by taking into account the events where a branching
is followed immediately (in one iterate) by a coalescing. With some com-
putation this analysis leads to the equation

b(—5—4b+9b%)\ , (—3—2b+5b>—12b*
2 P+ > p

+b(3—-2b+3b%)=0

The nonnegative solution to this is the curve plotted on the left in Fig. 3.
The contribution of the refinement is quite small-—it just thins the distribu-
tion at the low end.

The case of births is dealt with similarly, but now without assuming
that there necessarily is a defect in the center of a four-block of cells. We
still count the number of offspring of the center (defect or not) and arrive
at the equilibrium equation

[4b(1 —b)—1] p*> —8b(1 —b) p+4b(1 —b)=0
Again there is only one physically meaningful solution, which is plotted in

Fig. 3, right.
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