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Abstract

We study subshifts of finite type on {0,1}z2 of the form where in a finite window there
is always either one on no 1’s present. The problem is converted to a tiling/covering
problem on the (nZ)? lattice and its shifts. In this set-up we consider the uniqueness
of the equilibrium measure, density of 1’s at equilibriurn and the topological entropy.
Further insight is achieved by realizing that the equilibrium measure is the ground state
of an extremely simple probabilistic cellular automaton. Our study indicates critical

behavior in this one parameter class of rules.
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Introduction

Consider the set-up where one of the symbols 0 or 1 is assigned at every site on the
two-dimensional integer lattice. Suppose furthermore that we impose a condition on
what the density (frequency) of I’s can be in a window of fixed size. This a subshift
of finite type, non-empty except in trivial cases yet many of its properties like the
size of the subshift (topological entropy) or ergodic properties of the coordinate
shifts become rather difficult questions in the general case.

This work is a continuation of the work in [E1] where the case of constant
density in a rectangular window was treated. The subshifts in there have a tiling-
like quality with certain weak periodicity properties which makes their rigorous
analysis possible. The models exhibit extremely long range order characteristic of
zero temperature systems.

In this piece we aim to advance to the positive temperature realm by allowing
fluetuation in the density i.e. multiple values for the density. This leads to a rich
class of systems even under the further assumption that each window has only one
or no 1’s. In particular the hard square gas model [B] is incorporated. We study
especially the problems of characterizing the equilibrium measure and estimation
of the topological entropy in the context of these systems.

We also present a dynamical approach to these models. Apart from the usual
lattice shifts involved there is non-trivial but nevertheless extremely simple prob-
abilistic cellular automaton dynamics for which the equilibrium measures of the
subshift are ground states. This in turn has connection via voter models to critical
behavior which we indicate at the end.

1. Subshifts and tilings

Our configuration spaces are closed subsets of the set X = {0, 1}Z2 equipped with
the standard topology. The actions are subshifts of the full shift (X, os,0,) where
o. are the usual coordinate shifts:

on(@)ig) = Ta+15) and 0u(®)g) =T+, TEX

These actions obviously commute. To illuminate the form of restriction in our
subshifts we consider a couple of “canonical” examples.

Example 1.1.: Take {0, 1}z2 with the restriction that in every 1 x 2 and 2 x 1
window there must be exactly one 1. This system is of course very restricted, the set
of configurations consists of exactly two points, the checkerboard and its shift. Note
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that they can be simply generated from a diamond-tile (i.e. square with sidelength
V2 tilted 45 degrees) where the center is 1 and the vertices are the nearest neighbor
0’s. Call it a 1-tile.

Example 1.2.: Take again {0, l}z2 with the restriction that in every 2 x 2 window
there is exactly one 1. The set of allowed configurations, which is now uncountable
but still quite trivial can be simply generated using square 1-tiles of sidelength two
with symbol 1 at the center. If we instead impose the density condition in a 3 x 3
window the same construction clearly applies but the tiles are now of sidelength
three with 1 in the middle etc.

It is easy to see that the examples in 1.2.  are zero topological entropy and indeed
quite rigid. For details like the topological non-transitivity as well as more general
zero-entropy models see [E1].

Examples 1.1 and 1.2. continued: The set of allowed configurations in Example
1.1. is exactly the one that we get by generating a tiling from the allowed I-tile
on the square lattice or its dual lattice. Suppose now that we can also use a O-tile
which is like 1-tile but 1 at the center replaced by 0. So the allowed densities in
a window are now 0 and 1/2. If we generate the configurations on the lattice and
its dual using these two tiles it will be a superset of the original set, in fact an
uncountable set.

Note however that the tilings generated from 0 and 1-tiles admit a further
extension. If we encounter anywhere in a configuration a neighborhood where there
are four O-tiles in a 2 X 2 arrangement, their common corner, which is 0, could be
flipped into a 1. Call the set of configurations generated using 0 and 1-tiles and
the flipping process X 1). It is easy to see that this set of configurations is also
characterized by the rule “in every 1 x 2 and 2 x 1 window there is at most one 1”.
This the classical model of hard square gas (the hard squares being our 1-tiles).

Figure 1 here

In the case of larger window like in Example 1.2. the O-tile is defined analogously
and the difference to the Example 1.1. comes from the fact that there are more
than two sublattices of Z2 involved. In the case of a 2 X 2 window there are four
of them on which we have to consider the possibility of a flip (as the original tiling
was on {0,1}2)%). In the case of the 3 x 3 window there are nine sublattices.

The construction indicated can be summarized as follows.
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Proposition 1.3.: Suppose that X, is the subshift of the full shift X with the
property that in every n X n window there is either one or no 1's, n > 2. Then the
set of allowed configurations is generated from 0 and 1-tiles of sidelength n together
with subsequent flipping at the allowed sites.

2. Equilibrium and entropy

We now proceed to consider the equilibrium properties of the models. Specifically
we study the simplest of the models in the previous section, the hard square gas
model. The purpose of presenting the other models is that the same ideas can be
immediately applied to them. Extensions needed to this are pointed along the way.

To get a basic idea about the configuration space before we dwell into the equilibrium
measure(s) it is useful to parametrize it using densities of O-tiles on even and odd
lattices. We denote these by p. and p,. They assume values between 0 and 1.
The set of configurations with well-defined densities of 0-tiles is not closed but for
every ergodic measure it is of full measure. The set of such configurations can be
represented as in Figure 2.

Figure 2 here

The configurations in the shaded area are forbidden as they are too dense in 1-tiles.
The configurations on its boundary, the decreasing diagonal, consist of uniform
domains of 1-tiles on each of the two lattices in such an arrangement that the
boundary area between the domains of even and odd 1-tiles has vanishing density.
This is because every pair of neighboring 1-tiles from different lattices has between
them at least an area 1/2 which does not belong to any other similar pair and there
is a O-tile corresponding to it. Hence if there is a positive density of such pairs the
inequality pe + po > 1 will prevail. The corner (1,1) is trivial as it corresponds to
configurations essentially empty of 1-tiles.

A central object in the study of lattice models is the measure of maximal en-
tropy or the equilibrium measure. By this one means a measure on the con-
figuration space which maximizes the measure-theoretic entropy thereby giving the
topological entropy:
htop = hy- = sup h
op e A

Here M is the set of all translation (o and o0,,) invariant measures on the configu-

ration space.



We are ultimately interested in the unconditional measure of maximal entropy
and the configurations generic to it but let us first see how the measure of maximal
entropy behaves when conditioned to be supported by configurations with fixed
density (pe, po). Denote the corresponding conditional topological entropy & (pe, p,)-

The the sets of configurations at the corner (1,1) and on the diagonal p,+p, =
1, pe € [0,1] are of zero entropy. The former follows from the fact that positive
topological entropy requires a positive density both 0 and 1-tiles and the latter
from the fact that the boundary between even and odd domains of 1-tiles is of zero
density. In the rest of the triangle the entropy is positive. Off these singularities
the entropy behaves asymptotically as O (eln €) where ¢ is the distance from either
of the zero entropy subsets.

Along the right edge the the diagram the topological entropy is given by the en-
tropy of Bernoulli distribution with parameter p,, —p, log po — (1 — po) log (1 — p,) .
The formula for the top edge is the same with parameter pe.

Perturbation from these edges can be quantified as follows.

Theorem 2.1.: For large p, the conditional topological entropy h(pe, po) is max-
imized at po=1—3pt =2 +2(1 —p.) +0(1—pe).

Proof: A site on the odd lattice is free to be flipped if it is not blocked by oneé or
more neighboring 1-tiles on the even lattice. So the free area on the odd lattice has
density pp = Pr({odd site free to be flipped}) = p? where the assumption that the
0-tile distribution on the even lattice is Bernoulli(p.) has been used. Still under the
Bernoulli-assumption the entropy contribution from the odd lattice will be

== () e (52) + (-2 m (- 122)
2 PD PD PD PD

where a scaling has been performed to ensure correct final 1-tile density on the odd

lattice. This expression is maximized at p, = 1 — %p‘: which expands at p. = 1 as
given. |

Remark: There is of course the symmetric statement for the perturbation from
the top edge. It is perhaps worth pointing out that the quartic given in the Theo-
rem intersects the diagonal approximately at (0.7976,0.7976) which as we will see is
surprisingly close to the point that carries the configurations generic to the (uncon-
ditional) measure of maximal entropy. So even though the approximation is strictly
valid only in the neighborhood of the boundary it is not far off in the interior.

Because of our representation of the subshifts in terms of tilings and coverings there
is a special way of computing the topological entropy.
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Proposition 2.2.: The topological entropy of the hard square gas is given by

(2.1) h= % (heven + Pr(D4)log2).

Here heyen is the entropy of the tiling on the even lattice as given by the projection
of the measure of maximal entropy onto it and Dy is a 2 x 2 arrangement of 0-tiles
in it.

Proof: Suppose p* is a measure of maximal entropy and p} is its marginal on the
even lattice. From the even lattice the entropy contribution is then h,.. The con-
tribution from the odd lattice comes from sites where a 0-tile is not forced. These
are the sites centered at D4-diamonds. At these sites maximal entropy is attained
by assigning the 1-tile from a Bernoulli(1/2)-distribution. Hence the entropy con-
tribution from such site is log 2. Finally the even and odd lattices are 1/2-thinnings
of the Z2-lattice, hence the factor 1/2. |

The measure of maximal entropy doesn’t need to be unique but in the case of hard
square gas it is. This follows from the Dobrushin criterion ([DS], [RS]). Using this
knowledge we now proceed to estimate the topological entropy and the density of
1-tiles in its generic configurations. Before going into that it should be remarked
that the topological entropy has been computed to a good accuracy. Milosevic et.
al. ([MSS]) give the following value

(2.2) hinss) = 0.40749510126068.

However the methods used in that and other similar numerical studies do not seem
to illuminate much the generic structure of the configurations involved.

Theorem 2.3.: The density of 1-tiles at the equilibrium (on either lattice) is in
the interval (0.21367,0.25806).

Remark: The exact values of the endpoints can be obtained from the Proof but
we prefer to give the statement in this more explicit form. Note that the (crude)
extrapolation 0.7976 in the Remark after Theorem 2.1. gives 1-tile density 0.2024,
not very far from being in the interval!

Proof: Let p. be again the density of O-tiles on the even lattice and let c denote
the expected number of 0-tiles that a 1-tile forces on the odd lattice. Since exactly
half of the non-forced sites will be 1-tiles it must by the uniqueness of the measure
of maximal entropy hold that (2 + ¢)p. = 1. Hence under it

1+c¢ 1 2
24+c¢ r(1-tile) 2+c £ (Ds) 2+4c¢

Pr(0—tile) =
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on both lattices. Dy is a 2 x 2 0-window as in the entropy formula of Proposition
2.2.

The entropy of any distribution of tiles on the even lattice with 0-tile density p,
is bounded from above by the entbropy of the Bernoulli distribution with parameter
pe. Hence the total entropy at that O-tile density level is bounded from above by

1 2 1 1 1 14+c, l4+c 2
1 = 5 | = Byl = e ) i), .
2<hB(P=’+2+c°g2) 2( 2+c 82+c 2+c°g2+c+2+cl°g2)

This expression bounded by h{pnss) yields an upper bound for ¢, 2.6801 which in

turn gives the lower bound for 1 — p,.

The upper bound for 1 — p, follows from a lower bound for ¢ which we es-
tablish using a monotonicity argument. The 1-tiles on say the even lattice are
Bernoulli(1/2)-distributed on the non-forced sites. Call this set ' and pick a site
on it which has a 1-tile. How many sites will this 1-tile block? Let F’ be a superset
of F. Then clearly E(c| F) > E(c| F') as in a bigger domain the 1-tile is more
likely to share the blocking with a nearest neighbor 1-tile. Hence a lower bound is
obtained by calculating the blocking for a 1-tile in a half-space. Enumerating the
28 neighborhoods and weighting them uniformly according to the Bernoulli(1/2)-
distribution we get the lower bound for ¢: 15/8. This in turn implies the given uppér
bound for 1 — p, 8/31. |

To illustrate the usefulness of the tiling representation we now briefly show some
results on the numerical estimation of the topological entropy and the density of
tiles. In a similar fashion other statistics of the approximate measure of maximal
entropy could be extracted just as easily.

As a first approximation one could distribute the tiles on the even lattice ac-
cording to Bernoulli(p)-distribution. Then Pr(D4) = (1 — p.)* and maximizing
then the quantity

1
5 (—pelogpe — (1= pe)log (1 = pe) + (1= pe)* log 2) ,

gives a lower bound

0.392421

for the topological entropy. The 1-tile density on the even lattice corresponding to
this is approximately 0.170219. However the 1-tile density on the odd lattice is now
different, 0.237041. If we impose a further condition, that the densities must agree,
the numerical optimization yields the slightly worse lower bound 0.392125 at the
common density level 0.20151.



To enable possible long term order to enter into the approximation scheme let
us consider Bernoulli-distributed 2 x 2 tile blocks. As there are 16 such blocks and
their probabilities, p;, must add up to one, our optimization problem has 15 free
variables. The quantity to be maximized is now

1 1
3 (_Z Zpi logp; + Pr(Dy) log 2)

where the factor 1/4 stems from the blocks covering four sites.

Although we know from the uniqueness of the measure of maximal entropy that
its generic configurations must be statistically isotropic i.e. rotation invariant on the
lattice, it does not imply that this kind of configurations maximize the expression
above. However in numerical optimization we achieved exactly the same level of
entropy for the full 2 x 2 -model and the isotropic one. For this reason we do not
give the expression for Pr (D) for the full model. For the isotropic model it stands

1
1 (Po +2(po + 2p1 + p21)® + (po + 3p1 + 2pa1 + P2 +:D3)4) .

The first index of p refers to the number of 1-tiles in the 2 x 2-block and indices 21
and 22 refer to the bar and cross arrangements of 1-tiles in the case of two 1-tiles.
The entropy achieved using optimal Bernoulli-distributed 2 x 2 -blocks is

0.39877
with the corresponding block distribution being approximately
(po, p1, P21, P22, P3,Pa) = (0.499,0.069,0.031, 0.019,0.013, 0.009).

The 1-tile densities are again different, 0.199 on the even lattice and 0.225 on the
odd lattice.

This procedure of going into higher order Bernoulli blocks can be continued to
provide arbitrarily good lower bounds for the topological entropy (this procedure
can even be automated). We did not proceed to do this but only for comparison
computed the entropy bound using 3 x 3 -blocks and the ideas explained above.
This yielded the value

(2.4) 0.40140

with corresponding 1-tile densities 0.2073 and 0.2254 (note that these are approach-
ing or are already in the density bracket indicated in Proposition 2.3). Note also
that the value (2.4) is just 0.006 below the Milosevic et. al. estimate (2.2). This

]



level of accuracy from fairly small blocks (on top of the uniqueness result quoted
earlier) further confirms that the model does not have significant long term order.

We also note that the idea of Proposition 2.2. applies immediately to the more
general models. E.g. for the rule “at most one 1 in a 2 x 2 window” the formula
stands as

% (h1 + Pr (D3) hy + Pr(D3) hs + Pr(D3) In2) .

Here one fills in the sublattices from 1 to 4. h; are the corresponding entropies for
the sublattice measures and Pr (D,’;), which scale the contribution by the density
of sites available at the ¢*" step, are evaluated after the steps upto ¢ — 1 have been
performed. As an example of this procedure we just mention that if the fill-ins are
done Bernoulli(p;) on the available area, then a simple optimization of (2.3) yields
the lower bound 0.302 for the topological entropy of the given rule (thls is likely
not to be very tight).

(2.3)

3. A probabilistic cellular automaton and criticality

The model considered so far has been static i.e. there has been no time evolution
associated to it. There is though a very natural one which we now formulate.

The proof of the entropy formula (2.1) shows that the maximum entropy is
achieved when the flipping on sites centered at 2 X 2 arrangements of O-tiles is
done independently and with probability 1/2. Consider a generalization of this
procedure:

Figure 3 here

The rule above which we denote by f, applied to all neighborhoods in (2Z)? defines
a probabilistic cellular automaton (pca), Fy,. It maps (tile) configurations from
one square lattice to its dual.

For the golden mean subshift we have p = 1/2. By Proposition 2.2. and by the
fact that the measure of maximal entropy is unique for this subshift, the marginal of
this measure restricted to one of the sublattices is an invariant measure for the pca
F /2. The map of course alternates between copies of this measure on configurations
on the appropriate sublattices. Hence it is an equilibrium measure in the dynamic
sense as well. This naturally suggest that one should investigate the dynamics of
F,, p # 1/2, and their invariant measures.

The maps Fy and F) are rather simple. The former maps any tile configuration
to a all-O-tile configuration in one step and hence preserves only dp. The map F?
clearly preserves both dp and J;. More generally
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Proposition 3.1.: The pca map F preserves the set of configurations on the
diagonal p. + p, = 1.

Proof: By the argument in the beginning of Section 2 the density of mixed 2 x 2
neighborhoods (not all-0 or all-1) is zero in the configurations on the diagonal.
Hence in almost all neighborhoods Fj flips the assignment and consequently swaps
the subsets at (pe, po) and (po, pe) - [

The pca F. and F2__ for a small ¢ behave essentially like majority voter-models.
See [E2] for introduction and basic properties of these in the lattice-dual lattice
set up. By Fy, we denote a pca of this type on symbols 0 and 1 that updates
a homogeneous 2 X 2 neighborhood with the other symbol w.p. b, a 3-1-majority
loses with probability p and in evenly split neighborhoods the outcome is 1 with
probability 1/2.

The equilibrium properties are argued heuristically using results for voter mod-
els as follows. The pca F. clearly preserves a measure close to Bernoulli(e). This
rule is exactly the rule F¢y in neighborhoods with at most one 1 in them. The
rules are different in other neighborhoods but these are vanishingly small fraction
of neighborhoods in generic configurations at small values of €. F, disintegrates them
immediately and under Feg any finite island of 1’s of area A is expected to vanish
in time c(e)A, c(e) > 1 (the rule Fy is convex confined hence ¢(0) = 1, for details
of this see [E2]). The F¢-rule is critical in € preserving two measures for small
¢. Hence F, should preserve a measure close to the lower (low 1-density) invariant
measure of Feg.

The action of the pca Fy_. agrees with Fi_.¢ in neighborhoods with at most
one 1 and is arbitrarily close (in €) in neighborhoods with exactly four 1’s. But
they do not agree in other neighborhoods and since neither of these rules preserves
a measure close to &y or J; the argument above does not hold. However both
FZ_, and Ff_,  preserve such measures and thereby both have multiple invariant
measures (+/—-phases of Ising model).

To confirm this finding and to estimate the critical value p. above which F,
preserves two invariant measures a series of computer simulations was performed.
The configurations were on a lattice of the size 120x 120 sites with periodic boundary
condition. Initial state was all-0 and the run was continued until the density on the
two lattices (i.e. even and odd times) was approximately constant i.e. the system
relaxed to a ground state. The runs indicated that Fj, is ergodic for p < 3/4 and
nonergodic for p > 13/16 &~ 0.8125. Note that this interval is almost centered at the
estimated critical value 0.791502 in [BET)]. The best rigorous lower bound for p, is
far off at 0.575474 ([RS]). With our approach one could perhaps improve it.
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Finally we note that the pca formulation of course holds for all of the subshifts
in this paper. The neighborhood in the pca rule is of the size of the 0/1-tile. Similar
relaxation results are expected.
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Figure 2. Density diagram

Figure 3. Probabilistic cellular automaton



