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Introduction

In recent years a lot of attention has been focused on interactive dynamics
like particle systems and cellular antomata ([D], [W]). In these systems the site
variables are usually very simple and so is the interaction rule yet a great variety of
dynamics can emcrge. In particular striking examples where (pseudo-) randomness
is created by purely deterministic means have been found if not fully analysed. The
converse, emergence of order out of randomness (e.g. a random initial condition),
is understood only in a rather primitive fashion.

In the context of elementary cellular automata Rule 18 variations of both of
these intriguing phenomena surface. On one hand the rule transforms the ran-
domness in the initial configuration into perfect diffusivity that prevails at all later
times. This was discovered in simulations by Grassberger ([G]) and was later ana-
lyzed rigorously by e.g. Lind ([L]) and Eloranta & Nummelin ([EN]), On the other
hand more ordered configurations are formed through joining of two adjacent phas-
es. This is facilitated by an annihilation mechanism in which neighbouring kinks
disappear pairwise. The mechanism together with the diffusivity is conjectured to
determine the asymptotics of the Rule 18.

In this paper the central problemn of the joint motion of two kinks is studied.
We find it very close to the motion of two independent annihilating random walks
except for close range interaction. There certain combinatorial coustraints deny
the kinks independent-like movement. But even then the statistics are close to
those of the independent case. In particular we study the the spatial and temporal
statistics of the difference process as well as the correlations of the movements of
the kinks. In spite of obvious depency between the kinks the motion is remarkably
close to independent and the study finds no reasous to refute Lind’s conjectures
([L]). It secms likely that the observed division into two interaction regimes could

be utilized in proving results about the dynamics of an ensemble of kinks.

1. Definitions

This study is a sequel of [EN] and we build our definitions and notation on

this reference.



Let S = {0,1} be the set of symbols and E = SZ the set of configurations on
the lattice of integers Z. Equipped with the product topology it becomes a com-
pact metric space homeomorphic to the Cantor set. A one-dimensional elementary
cellular automaton is a’dynamical system on E defined by a blockmap on three
neighbouring symbols which commutes with the shift on E. The blockmap of Rule
18 is simply 001 +— 1, 100 — 1 while other triples map to zero.

The image of a configuration = {5(x), 2 € Z} under the Rule 18 is denoted by
1. A partial configuration is denoted by n[e,b] = (3y(a),...,n(b)), a < b, a,b € Z.

A configuration 1 contains a kink (dislocation) if yla,b] = (1,0,...,0,1) for
b — a odd. The midpoint of the kink (a + b)/2 belongs to Z+1/2.

We observe that when 5[n,n+ 1] = (1,1) the kink is bound to expand with the
next iterate of 7. By saying that the kink jumps we refer to the possible movement
of its midpoint.

Let Ey = {n| 9(2/) =0Vj € Zor 9(2j +1) =0Vj € Z}. These are the cou-
figurations without a kink. It is customary to call configurations in this sct ordered
phases. Let N be the set of natural numbers and Ny the set of non-negative integers.
We further define E;, = {3| n[a,b] = (1,0%*,1) for some k € Ny and unique a,b €
Z, a < b}. Elements of E, contain exactly one kink (surrounded by two tails of
ordered phases). The sets E;, i = 0,1, are invariant under the Rule 18.

Let a be the Bernoulli(1/2,1/2) measure on E; (i.e. on the unspecified bits
of their ordered phase tails). In [EN] it was proved that given an a-distributed
initial configuration the kink in it performs a random walk with i.i.d. delay times.
The walk has zero mean and its asymptotic squared variation equals to n. Hence a
Brownian motion can be obtained from it via a standard scaling limit.

It is known that the pointmass on the all-zero configuration and the even
Bernoulli distribution (together with their convex combinations) are the only in-
variant measures for the Rule 90 ([L]). Furthermore they are the only invariant
measures for Rule 18 on Ej since these two rules agree on this set. Hence our
choice of « is the only non-trivial stationary environment for the kink process. In
the case of Bernoulli(p,1 — p), p # 0,1/2,1, initial condition the resulting random

walk is a non-stationary stochastic process (walk in a temporally inhomogeneous
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medium). It should converge to the stationary walk in the Cesaro-sense (since the
environment does by [L]).

In most of the following analysis we concentrate on coufigurations with exactly
two kinks in it. Call the set of all such configurations Ey. It can be formally defined
as above or with a language-oriented notation by requiring that the elements of this

set are of the form
(1) ((-0)*,1,0*,1,(0,-)%,0*",1,(0,)°).

Here ¢,I,r > 0. As ususal * denotes an arbitrary repetition of the expression.

A pair of kinks annihilates exactly when 7 is applied to y[n,n + 2k + 2] =
(1,1,{0,1}*,1),k > 0. The center of the resulting configuration mn—i,n+2k +
2+ j] = (1, {0}2F+H1++7 1) ¢, positive and odd, is the center of the now vanished
kinks. This definition is useful in the context of the jump correlations. We also
observe that although the kinks in the prescribed configurations annihilate only
those with & odd can be observed after the first iteration. This is simply because
configurations with & even do not have any preimages. Figure 1. illustrates an
evolution from an iuitial condition of the form (1).

Analogously one could define sets E;, ¢ > 2, of configurations with exactly i
kinks. The sets Ej, i > 2, arc not invariant due to the annihilations. It looks highly
likely that Ey and E; are the only nontrivial (in the sense of measure) invariant
sets that have a fixed finite number of kinks in them.

We denote by X'(n) aud X7(n) the locations of the left and right kink in
the n'! iterate. The order of the kinks can’t change during the evolution. In the
simulations we considered a finite toral lattice and there the order for all positive
times is defined from the order in the imitial condition in the obvious way. The
notation d(n) = X7(n)—X'(n) is used for the differcnce process. Clearly d(n) € Ng
for all n > 0 for which it is defined. Annihilation takes place at first n > 0 for which
d(n) = 0. It is also useful to think d > 0 as a parameter that divides the set E,

into shells of constant d.



2. Methods

To uncover the details of the joint motion of two kinks a number of computer
simulations were performed. The lattice was chosen with the periodic houndary
condition. After the number of iterations was decided (usually in the 50-200 range)
the size of the lattice was determined from the condition that the backward space-
time cones of the kinks could have only one-sided intersection (with a very high
probability). This was done to simulate the case of two kinks colliding in the
infinite lattice where the dependency between the kinks enters from between only.

The intial condition was of the form (1) with ordered phases of equal sizes
at the ends. The unspecified bits in the ordered plase were chosen independently
pseudo-random with even probability.

The programs were written in Mathematica and most of them were run on a

IBM RS/6000 workstation.

3. Spatial aspects of the joint motion
3.1. The difference process

We first present the statistics of the difference process d(n) = X"(n) — X!(n).
This is an integer-valued process that dies at the first hit at zero i.e. annihilation.

Let us consider the results of a typical simulation of this process. It consisted
of 300 histories of 100 iterates each of a kink pair that was origiually at distance 15
from each other. The lattice was 417 cells wide. The run resulted in 10775 moves
and 94 of the histories were terminated in an annihilation.

Figure 2a. illustrates the jumps of d(n). When at least one of the kinks
expanded at time n the entry (d(n+1) —d(n}),d(n)) was incremented. The resulting
cumulative distribution is plotted. d(n) peaks at 15 as expected and the distribution
is almost symuuetric with respect to the vertical axis past this d-value. For smaller
values the attractive motion is restricted and the asymmetry in the distribution is
an indication of this. We note that the empty wedge between 10 and 11 o'clock is

indeed always there and in the form shown. In Figure 2b. we have a magnification
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of the central area of Figure 2a. The grayscale has been altered to enhance the hem
of the distribution.

The annihilations are prominent in both pictures since they constitute the
entries on the diagonal line d(n) = —d(n + 1) + d(n), n > 3. They indeed occur
only at d values 3 + 4m, m > 0 as claimed. The distribution varies with d and
doesn’t scem monotone or unimodal. This was confirmed in a number of runs with
varying d(0). To investigate this phenomenon the quotient of annihilations to the
total number of moves from shell at d was computed. These findings are plotted
in Figure 3. All samples during the first five iterates were ignored to supress the
iufluence of initial condition. Here d(0) was uniformly distributed on odd numbers
between § and 53. Note that annihilations at distance 15 seem more frequent than
at 11. This was a consistently observed and reveals an interesting non-uniformity in
the structure of the underlying state transition graph. The backward trees rooted
at these two sinks have different growth rates. Hence their basins of attraction are
of different size as well.

An attempt was made to analyse the state transition graphs of the action of
the automata on E,. Here B, is a reduction of E, where only equivalence classes of
configurations are identified. These classes are defined by requiring the same two
kinks with identical configurations between them. The action of 7 naturally defines
a directed graph on this node set. Again d is a natural parameter to partition the
set E,. E, consists of 4 states on the shell 3, 10 on shell 5, 22 on 7 etc. The
structure of these was determined exactly but due to intershell transitions this isn't
enough to explain the indicated non-uniformity. Transitions to shell 3 only come
from outer shells and this transition probability can be estimated using frequency
of annihilations from figure 3. Shell 5 turns out to be repelling; on it transitions
to outer shells are clearly favored. Consequently most d = 3 annihilations were not
reached via a path visiting shell 5 immediately before the annihilation.

Finally we note that the subgraphs of nodes with large d have a high degree of
uniformity. Since the transition probabilities of the (independent) random walk on

the entire graph are exactly known we expect that it can be further analysed.



3.2. Correlations

In order to mcasure the degree of loss of independence the correlation coefficient
for the jumps of the two kinks, r(X'(-+1) = X'(:), X"(- +1), X"(-)), was calculated
cumulatively as a function of the shell parameter d.

Figure 4a. illustrates the results. 250 runs of length 100 each were performed
at each odd distance from 5 to 53. The sample size was not sufficient outside
the interval from 4 to 60 for the correlation coefficient estimate to be statistically
reliable.

The contribution from annihilations is again clear at distances 7, 11 and 15,
The repulsion of shell 5 amounts to a small negative correlation. One also discovers
that correlations at even distances arc almost zero. This is a consequence of the
intrinsic difference between even and odd shells. Kinks can expand simultancously
only if they are at an odd distance. Of course one expects this variability in statistics
in the moves to be supressed with larger sample sizes for all but the smallest values
of d.

Apart from annihilations the moves themselves are remarkably uncorrelated at

all distances as shown in Figure 4b. (which is compiled from Figure 4a. run).

4. Temporal aspects

To further analyse the cumulative effects of the dependency on the motion of
the kinks three different exit times were recorded.

We call T an annihilation time if it is the smallest integer n > 0 such that
d(n) = 0. By Ty,p we denote an top ezit time ie. the smallest integer n > 0 such
that d(n) > 2d(0). Finally a purc annihilation time, T, is an annihilation time
which is not precceded by a top exit.

Let ¥, = B,( = Bfg) where B(") are independent Brownian motions starting at
yo and 0 respectively, Then ¥ 1s a Brownian motion and Y7 has a normal distribution
with mean zero and variance 2¢. The density of the first hitting time, T, of this

process to zero is given by ([KT])

»

Yo -3

(2) f(tYo = wo) = WC
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If the kinks were independent a distribution for T close to f with yg = d(0) would
he observed.

Simulations consisting of 40000 runs of length 50 (or less if an annihilation
occurred) were performed. Let us consider the one where the initial distance was
7. Some 24336 annihilations were observed. The mass annihilations (due to the
form of the initial condition) observed at n = 1,3 and 4 accurately correspond to
the theoretical values obtained from analysing the shell 7 state transition graph,
The specific structure of the graph in shell 7 rules the anuihilations upto cight
iterates. However after this a picture remarkably coherent with the independent
case emerges. The Figure 5. shows T- and Tg-distributions superimposed after
a least squares fitting of the vertical scales has been done (this just amounts to
cqualing the volumes of the aunihilations). The data has been smoothened by
averaging cach time instant over its two inmnediate neighbors and both the data
and the graph have heen shifted seven steps to the left. Consequently the time
range from 8 to 49 is shown. From the data one is tempted to guess that d(n) has
its variance slightly below 2n. However more extensive simulations are needed to
establish this cinpirically.

We note that this fit points towards a very strong loss of memory property
of the process d(-). The data scems to be indicating almost identical‘statistica]
propertics in these two systems even at late annihilation times. Yet we know that
almost all annihilations take place at distances 3 or 7. If an anniliillation occurs at
time 40 at distance 3 the backward cones of the kinks have at least a 95% overlap
and the initial conditions agree at least to 97.5%. The corresponding numbers in
the case d = 7 are 86% and 92.5%. So even when the kinks have almost identical
pasts an independent-like hehavior prevails.

By definition the variables Tj,, and T}, have identical distribution if the under-
lying process has indepeudent and symmetric transition probabilities (like ¥ has).
So it is of interest to know how these distributions look for our system. They were
computed in the same runs as T and they are superimposed (without scaling) in
Figure 6. We again note a similar type of decay (O(n*/?)). But due to mass
annihilations in the small range (n < 4) and absence of top exits there we find

a slight domination of Ty later. Once annihilations at the first step (our initial
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conditions contained two (1,1)-kinks) are removed the remaining totals of annihila-
tions and top exits are within 6% of cach other. When the annihilations at steps
3 and 4 are taken into account the apparent imbalance in Figure 6 is explained.
Hence the difference between the distributions of pure anunihilations and top exits is
significiant only up to seventh iterate. Overall this simulation confirms the earlier
results that the combinatorial restrictions to moves in the small shells perturbs the
left-right-synunetry of d. This phenomenon explains the carly dominance of pure

aunihilations.

5. Discussion

In this study we find clear evidence that the randomness dominating the motion
of a single kink breaks down in the interaction of the kinks. Hence the diffusion
approximation that can be made exact in the case of a single kink ([EN]) needs to
be treated with care in the case of a general initial configuration i.e. in the presence
of many kinks. However the break down doesn’t secin to alter the statistics in an
essential way.

It seems natural to characterize the interaction between two kinks within two
realms. At close range, d < 15, the combinatorial structure of the problem imposes
restrictions to the moves with d(n + 1) — d(n) < 0 but not to moves with d(n +
1) —d(n) > 0. This leads to asymmetry in the jump distribution. In the d > 15
range the kinks seem to be moving as if almost independent. In both ranges various
statistics of the joint motion agree with those of the independent random walks
with unit variances. An exception is the d < 7 range. But even therce the motion
resembles the independent case in such a way that the total volumes of annihilations
and top exits over all shells agree with a good degree of accuracy. This is crucial
since that guarantees identical annihilation rates with the independent random walk
(Brownian motion) case, It remains to be seen if the indicated division can be used
to characterize the recurrence properties of the kinks.

We note that Lind’s conjectures follow immediately if the kinks are indepen-
dent annihilating random walks. In the case of nearby kinks the independence is
clearly violated but the joint motion of two kinks closely approximates the inde-

pendent case in the various statistical senses that we tested. And since multiple
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annihilations are extremely rare the case of two kinks considered here is indeed

the key to the asymptotic dynamics. Our findings indicate nothing to refute the

conjectures. Moreover any non-local property of the system i.e. any property that

doesn’t solely depend on the very close range interaction seems well approximable

by the independent annihilating random walk model.
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