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Abstract

We study the subshifts of finite type on {0,1}Z
2
having the property in every 3×3 square

there is a fixed number of ones. In particular we investigate shift-deformations of allowed

configurations and show the topological non-transitivity of the shift-action. The last

property is also shown to hold for all two-dimensional subshifts of the same generalized

type.
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Introduction

The space of configurations X = {0, 1}Z
2

together with the product topology is a

compact metric space. The following non-empty subsets of X are of interest to us.

Definition: For k = 1, 2, 3 or 4 the rule k is satisfied if in a 3×3 square there are

exactly k ones. The set of configurations which satisfy rule k everywhere is denoted

by Xk.

Remark: Properties of rules 5,6,7 and 8 obviously follow from the properties of

the defined rules by considering zeros instead of ones.
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The 3× 3 square in which we impose the consistency requirement according to one

of the rules is called a window and the piece of configuration in it a scenery.

It is natural to equip the configuration space with the horizontal and vertical

coordinate shifts

σh(x)(i,j) = x(i+1,j) and σv(x)(i,j) = x(i,j+1), x ∈ X.

These actions obviously commute. Since Xk are closed under the action of the shifts

we obtain subshifts of finite type (Xk, σh, σv) .

Surprisingly little is known about the structure of these spaces and the action

on them. In this note we alleviate this situation a little bit. The original motivation

(rule 4) was provided by K. Schmidt in [S].

1. Spaces

All the defined spaces are non-empty. The allowed or legal configurations are related

to each other in ways worth investigating.

There are two different types of periodic configurations: (horizontally or ver-

tically) periodic and doubly-periodic. The first is only invariant under σh
pσv

q for

some minimal (p, q) 6= (0, 0) (and its multiples), the second under σh
p1σv

q1 and

σh
p2σv

q2 where (pi, qi) 6= (0, 0) and (pi, qi) are not rationally related.

In constructing new configurations from given ones it is useful to realize the

following legal moves for deforming configurations (and sceneries).

Lemma 1.1.: Given an allowed configuration in Xk any vertical or horizontal shift

of a column or a row of period three results in an allowed configuration.

The proof is immediate since these shifts leave the number of ones seen in any

window unchanged.

Proposition 1.2.: The configurations in X1 are either periodic or doubly-periodic.

In Xk, k = 2, 3, 4 there are also aperiodic configurations.

Proof: Let k = 1. Consider in a legal configuration an arbitrary one say at

(x, y) and its nearest neighboring one to the right at (x + 3, y′) (this is uniquely

determined). If they have the same ordinates test (x+3, y′) and the one to its right

for the same property an so on until a pair with different ordinates is found. If none

is found check the left neighbors the same way. If no such pair is found we have

a bi-infinite periodic row 001. But this implies that the rows at distance one and
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two are 0 and the rows at distance three are 001. Hence the global configuration is

horizontally periodic or doubly-periodic. If a vertically unaligned pair was found it

forces a bi-infinite vertical column of width eight and of period three. Extending

this we see that the configuration is vertically periodic but not doubly-periodic.

In the case of rules 2, 3 and 4 a doubly-periodic configuration is generated

for example from the prototiles in shown in Figure 1 a,b and c respectively. All

non-trivial rows are period three so a shift by one to the right of any such row

gives a horizontally periodic configuration which is not vertically periodic. In these

configurations there are still period three columns (through the middle of a deformed

tile). Hence a vertical shift by one results in an aperiodic legal configuration.

Figure 1 a,b,c,d,e. Prototiles. Black is one, white is zero.

We require prototiles to be rectangles. Doubly-periodic configurations of course

have the key property of being immediately globally constructible from the local

description of the tile. Periodic but non-doubly periodic configurations cannot

be generated from a single tile but they may be generated from a tile and its

periodic shift as in the proof above. As the proof indicates some of the aperiodic

configurations are also generated from a small number of prototiles.

The following result resolves the possible sizes of prototiles.

Theorem 1.3.: For X1 the prototile generating a doubly-periodic configuration is

of size 3×3. For Xk, k = 2 or 4 it can be of any size 3w×3h where w, h are natural

numbers. For X3 all prototiles have at least one of the sidelengths a multiple of

three.

Proof: By the structure of configurations in X1 the first assertion is clear. For

k = 2 or 4 consider a legal segment of height 3 and width l which is period three

horizontally. Let its ith row contain ni ones. Then necessarily
∑3

i=1 ni/(3l) = k/9

which is the density of ones in any strip of width three. But this implies that l is

divisible by 3. For a l1× l2 prototile apply this argument along any column and row
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of width 3 to obtain the second part of the statement. By using legal column and

row shifts as in the proof of Proposition 1.2. it is easy to show that prototiles with

any w, h can be constructed. If k = 3 the density argument applied to a l1 × l2

prototile implies that one of the sidelengths is necessarily divisible by three.

Remark: In X3 there are indeed configurations generated from prototiles with one

of the sidelengths not a multiple of three, e.g. the one shown in Figure 1d.

The Theorem naturally leads to the question whether any allowed configura-

tion is a result of a sequence of legal moves starting from a single doubly-periodic

configuration. In other words is Xk a shift-connected set? By the proof of Propo-

sition 1.2. this is clearly the case for X1. The question is of some subtlety since

seemingly the only systematic way of constructing a global configuration is by legal

moves from a doubly-periodic configuration.

Turns out that X4 is not shift-connected. After solving (by computer) all the

legal 6 × 6 prototiles a few “exotic” ones like the one shown in Figure 1e. were

found. In the global configuration it generates there are only rows and columns of

period six hence it cannot be shift-deformed to a period three configuration.

The question remains open for X2 and X3. As a hint to the affirmative it was

found that in every 6× 6 tile for X2 and in every 6× 4, 6× 5, 6× 6 and 6× 7 tile

for X3 there are period three rows or columns.

2. Action

We now consider the basic properties of the (σh, σv)-action on the configuration

spaces.

If in a window we see n1 ones in the leftmost, n2 in the center and n3 in the

rightmost column we call it type (n1, n2, n3) .

The following observation is of some consequence.

Lemma 2.1.: Let x be a configuration in Xk, any k. Given a scenery in x with

column distribution (n1, n2, n3) consider the bi-infinite horizontal strip of width

three containing it. Every scenery in this strip has column distribution (n1, n2, n3)

or it’s cyclic permutation. Analogously for the scenery’s row-distribution.

Proof: By shifting the window to the right by one the scenery loses n1 ones hence

the same number has to enter from the right.

It is easy to see that each Xk, k > 1, contains configurations with k adjacent

(horizontal or vertical) ones somewhere.
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Proposition 2.2.: For rule 2 no configuration with two adjacent horizontal ones

can contain two adjacent vertical ones. For rules 3 and 4 no configuration with

three adjacent horizontal ones can contain three adjacent vertical ones.

Proof: The argument is identical for all three cases so let us consider k = 2.

Let H be the horizontal strip of height three containing a scenery with two vertical

adjacent ones and let L be the vertical strip of width three containing a scenery with

two horizontal adjacent ones. By applying Lemma 2.1. we see that in H ∩ V there

are both two adjacent horizontal and vertical ones. Hence the rule 2 is violated.

For each Xk, k > 1, let X
(h)
k and X

(v)
k be the set of configurations containing

somewhere at least k ∧ 3 horizontally or vertically adjacent ones. Let X
(c)
k be the

complement of their union. In view of Proposition 2.2. these three sets partition

the configuration space. Subsequently we drop the index k once it has declared

which rule is considered.

The orbit of an element in Xk is the set O(x) =
{

σi
hσ

j
v(x)| (i, j) ∈ Z2

}

. De-

note its closure by O(x). A continuous transformation on a metric space is called

topologically transitive if there is a element in the space whose orbit under the

transformation is dense ([W]). Note that the shift-action on any Xk is continuous in

the inherited topology so it make sense to ask whether this minimal mixing prevails

in our set-up.

Recall that X can be metrized by many equivalent ways e.g. by

d(x, x) = 0 and d(x, y) = 2−min{max{|i|,|j|}| x(i,j) 6=y(i,j)} for x 6= y.

Hence for denseness it suffices to consider matching on arbitrarily large squares

centered at origin.

Theorem 2.3.: None of the systems (Xk, σh, σv) , k = 1, 2, 3 or 4 is topologically

transitive. X1 has two maximal transitive components; the vertically and horizon-

tally periodic configurations. For Xk, k > 1, the following exclusions hold:

X(h) ∩O(x) = ∅ ∀x ∈ X(v) and X(v) ∩O(x) = ∅ ∀x ∈ X(h) together with

X(h) ∩O(x) = ∅ and X(v) ∩O(x) = ∅ ∀x ∈ X(c).

For k > 2 we also have the weaker exclusion: X(c) 6⊂ O(x) ∀x ∈ X(h) ∪X(v).

Proof: In view of Proposition 1.2. we know that every vertically (or doubly-)

periodic configuration is uniquely determined by specifying how much (±1 or 0)

every third column is shifted with respect to its neighbor three to the left. This

set of vertical off-sets {−1, 0, 1}Z is in a one-to-one correspondence with the set
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of vertically (and doubly-) periodic configurations upto a horizontal shift to match

the non-zero columns. Call a legal column of width three with all ones in the left

column a slab. The desired x is built simply by placing first slabs with different

off-sets next to each other, then next to them pairs of slabs with all different pairs of

off-sets and so on. Hereby we exhaust all finite blocks of off-sets and consequently

x must have a dense orbit in vertically periodic configurations.

For k > 1 it is an immediate consequence of the definition of X(c) that the

orbits of its elements are bounded away from elements in both X(h) and X(v).

Moreover the exclusion property of Proposition 2.2. clearly implies that no ele-

ment in X(h)
(

X(v)
)

can have its orbit arbitrarily close to any element in X(v)

(

X(h) respectively
)

. For k > 2 this can be further refined as follows. Note that for

each element x in X(h) every scenery must by Lemma 2.1. be of the type (1, 1, 1)

for rule 3 and (2, 1, 1) or its cyclic permutation for rule 4. But then O(x) is bounded

away from those configurations in X(c) in which every scenery is of type (2, 1, 0) or

(2, 2, 0) respectively (for example the doubly periodic configurations generated by

the prototiles in Figure 1b and 1c).

Remarks: 1. Also in the k > 1 case at least two of the transitive components

are simply related: the one in the complement of X(h) is of course just a 90 degree

rotation of the one outside X(v). Whether these or the other components further

split by a more subtle exclusion/conservation law remains open.

2. The results indicate that configurations are indeed quite rigid. Another sign of

this is that the systems (any k) are of zero topological entropy. This follows from the

observation that a diagonal strip of width four determines the entire configuration.

But the number of different such diagonals of length N is proportional to 2cN .

Hence the number of different configurations in a N ×N square is not proportional

to 2c
′N2

and the entropy must be zero.

3. Extension

The methods used for Theorem 2.3. suitably refined actually enable one to prove

the basic non-transitivity result in greater generality. We present it here and give

a streamlined proof indicating the modifications.

Suppose that we have s < ∞ symbols S = {0, 1, 2, . . . , s− 1} and consider the

subsets of SZ
2

defined by the rule (k0, k1, . . . , ks−1) which requires that in every

p × p square there are exactly ki copies of the symbol i. Obviously ki ≥ 1 and
∑

ki = p2. Call the subspace X(k0,k1,...,ks−1).
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Theorem 3.1.: The shift-action on any of the spacesX(k0,k1,...,ks−1) is topologically

non-transitive.

Proof: If ki = 1 for some symbol i the argument is as in Theorem 2.3. Suppose

that ki ≥ 2 ∀i. Given a symbol i define X(h)(i) for it essentially as before: it

contains all configurations in which there is somewhere at least ki ∧ p i’s in a

horizontal p-block. The exclusion argument of Proposition 2.2. works for this

symbol if 2 (ki ∧ p)− 1 > ki. This is equivalent to 1 < ki < 2p− 1 holding. Hence if

ki satisfies these inequalities the sets X(h)(i) and X(v)(i) are disjoint (and contain

the orbits starting from them). As before elements in the complement of their union

cannot have dense orbits in either set and the non-transitivity follows.

The remaining (and novel) case is the one where ki < 2p−1 fails for all symbols.

Note that then we consider (p, s)-pairs with s ≤ p2/(2p− 1). Given a symbol i the

configurations in X(h)(i) have in every scenery the symbol i-distributions of the

form (n1, n2, . . . , np) , ∀nl ≥ 1 (or its cyclic permutation). On the other hand

X(c)(i) clearly contains e.g. doubly periodic configurations where the i-distribution

is of the form (n′
1, n

′
2, . . . , 0) in every scenery. This is just because ki ≥ 2p − 1 ∀i

so in particular any symbol can form an L -shaped area like the symbols 0 does in

Figure 1c. Hence elements of X(h)(i) cannot have dense orbits in X(c)(i) and the

converse holds again by definition.

The type-preservation in shifting the window seems to produce strong enough argu-

ment only in two dimensions. The natural generalization of the definition for X(h)

for Zd-actions, d ≥ 3 is not useful for this reason and it is unclear how to argue the

higher dimensional case.
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