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Abstract

We study the subshifts of finite type on {0,1}Z2 having the property in every 3x3 square
there is a fixed number of ones. In particular we investigate shift-deformations of allowed
configurations and show the topological non-transitivity of the shift-action. The last
property is also shown to hold for all two-dimensional subshifts of the same generalized

type.
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Introduction

The space of configurations X = {0, l}Z2 together with the product topology is a

compact metric space. The following non-empty subsets of X are of interest to us.

Definition: For k =1, 2,3 or 4 the rule k is satisfied if in a 3 X 3 square there are
exactly k ones. The set of configurations which satisfy rule k everywhere is denoted
by Xk;.

Remark: Properties of rules 5,6,7 and 8 obviously follow from the properties of

the defined rules by considering zeros instead of ones.
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The 3 x 3 square in which we impose the consistency requirement according to one
of the rules is called a window and the piece of configuration in it a scenery.
It is natural to equip the configuration space with the horizontal and vertical

coordinate shifts

on(@) (i) = T+1,5) and  o0u(T)a ) =Ta41), T EX.

These actions obviously commute. Since X} are closed under the action of the shifts
we obtain subshifts of finite type (X, on,0,).

Surprisingly little is known about the structure of these spaces and the action
on them. In this note we alleviate this situation a little bit. The original motivation
(rule 4) was provided by K. Schmidt in [S].

1. Spaces

All the defined spaces are non-empty. The allowed or legal configurations are related
to each other in ways worth investigating.

There are two different types of periodic configurations: (horizontally or ver-
tically) periodic and doubly-periodic. The first is only invariant under o,?c,? for
some minimal (p,q) # (0,0) (and its multiples), the second under o;?'c,? and
orP20,% where (p;,q;) # (0,0) and (p;, g;) are not rationally related.

In constructing new configurations from given ones it is useful to realize the

following legal moves for deforming configurations (and sceneries).

Lemma 1.1.: Given an allowed configuration in Xy, any vertical or horizontal shift

of a column or a row of period three results in an allowed configuration.

The proof is immediate since these shifts leave the number of ones seen in any

window unchanged.

Proposition 1.2.: The configurations in X are either periodic or doubly-periodic.

In X, k= 2,3,4 there are also aperiodic configurations.

Proof: Let £ = 1. Consider in a legal configuration an arbitrary one say at
(z,y) and its nearest neighboring one to the right at (z + 3,%’) (this is uniquely
determined). If they have the same ordinates test (x +3,y’) and the one to its right
for the same property an so on until a pair with different ordinates is found. If none
is found check the left neighbors the same way. If no such pair is found we have

a bi-infinite periodic row 001. But this implies that the rows at distance one and
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two are 0 and the rows at distance three are 001. Hence the global configuration is
horizontally periodic or doubly-periodic. If a vertically unaligned pair was found it
forces a bi-infinite vertical column of width eight and of period three. Extending
this we see that the configuration is vertically periodic but not doubly-periodic.

In the case of rules 2,3 and 4 a doubly-periodic configuration is generated
for example from the prototiles in shown in Figure 1 a,b and c respectively. All
non-trivial rows are period three so a shift by one to the right of any such row
gives a horizontally periodic configuration which is not vertically periodic. In these
configurations there are still period three columns (through the middle of a deformed

tile). Hence a vertical shift by one results in an aperiodic legal configuration. |

Figure 1 a,b,c,d,e. Prototiles. Black is one, white is zero.

We require prototiles to be rectangles. Doubly-periodic configurations of course
have the key property of being immediately globally constructible from the local
description of the tile. Periodic but non-doubly periodic configurations cannot
be generated from a single tile but they may be generated from a tile and its
periodic shift as in the proof above. As the proof indicates some of the aperiodic
configurations are also generated from a small number of prototiles.

The following result resolves the possible sizes of prototiles.

Theorem 1.3.: For X, the prototile generating a doubly-periodic configuration is
of size 3 x 3. For Xy, k = 2 or 4 it can be of any size 3w x 3h where w, h are natural
numbers. For X3 all prototiles have at least one of the sidelengths a multiple of

three.

Proof: By the structure of configurations in X; the first assertion is clear. For
k = 2 or 4 consider a legal segment of height 3 and width [ which is period three
horizontally. Let its i'" row contain n; ones. Then necessarily Zf’zl n;/(3l) = k/9
which is the density of ones in any strip of width three. But this implies that [ is

divisible by 3. For a [ x [y prototile apply this argument along any column and row
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of width 3 to obtain the second part of the statement. By using legal column and
row shifts as in the proof of Proposition 1.2. it is easy to show that prototiles with
any w, h can be constructed. If & = 3 the density argument applied to a [; x [y
prototile implies that one of the sidelengths is necessarily divisible by three. |

Remark: In X3 there are indeed configurations generated from prototiles with one
of the sidelengths not a multiple of three, e.g. the one shown in Figure 1d.

The Theorem naturally leads to the question whether any allowed configura-
tion is a result of a sequence of legal moves starting from a single doubly-periodic
configuration. In other words is X} a shift-connected set? By the proof of Propo-
sition 1.2. this is clearly the case for X;. The question is of some subtlety since
seemingly the only systematic way of constructing a global configuration is by legal
moves from a doubly-periodic configuration.

Turns out that Xy is not shift-connected. After solving (by computer) all the
legal 6 x 6 prototiles a few “exotic” ones like the one shown in Figure le. were
found. In the global configuration it generates there are only rows and columns of
period six hence it cannot be shift-deformed to a period three configuration.

The question remains open for X5 and X3. As a hint to the affirmative it was
found that in every 6 x 6 tile for X5 and in every 6 x 4, 6 x 5, 6 x 6 and 6 x 7 tile

for X3 there are period three rows or columns.

2. Action

We now consider the basic properties of the (o}, 0,)-action on the configuration
spaces.

If in a window we see nq ones in the leftmost, ns in the center and ns in the
rightmost column we call it type (ni,ng,n3).

The following observation is of some consequence.

Lemma 2.1.: Let x be a configuration in Xy, any k. Given a scenery in x with
column distribution (ni,n2,ns) consider the bi-infinite horizontal strip of width
three containing it. Every scenery in this strip has column distribution (ny,ns,ng3)
or it’s cyclic permutation. Analogously for the scenery’s row-distribution.

Proof: By shifting the window to the right by one the scenery loses n; ones hence

the same number has to enter from the right. |

It is easy to see that each Xj, k£ > 1, contains configurations with k& adjacent

(horizontal or vertical) ones somewhere.



Proposition 2.2.: For rule 2 no configuration with two adjacent horizontal ones
can contain two adjacent vertical ones. For rules 3 and 4 no configuration with

three adjacent horizontal ones can contain three adjacent vertical ones.

Proof: The argument is identical for all three cases so let us consider k = 2.
Let H be the horizontal strip of height three containing a scenery with two vertical
adjacent ones and let L be the vertical strip of width three containing a scenery with
two horizontal adjacent ones. By applying Lemma 2.1. we see that in H NV there

are both two adjacent horizontal and vertical ones. Hence the rule 2 is violated.

For each X, k£ > 1, let X]gh) and X ,iv) be the set of configurations containing
somewhere at least k£ A 3 horizontally or vertically adjacent ones. Let X ’gc) be the
complement of their union. In view of Proposition 2.2. these three sets partition
the configuration space. Subsequently we drop the index k£ once it has declared
which rule is considered.

The orbit of an element in X, is the set O(z) = {0} 04 (z)| (i,j) € Z*} . De-
note its closure by O(z). A continuous transformation on a metric space is called
topologically transitive if there is a element in the space whose orbit under the
transformation is dense ([W]). Note that the shift-action on any X}, is continuous in
the inherited topology so it make sense to ask whether this minimal mixing prevails
in our set-up.

Recall that X can be metrized by many equivalent ways e.g. by
dz,z) =0 and d(x,y)=2" min{max{|illi}] 2c.p#ven}  for o # .

Hence for denseness it suffices to consider matching on arbitrarily large squares

centered at origin.

Theorem 2.3.: None of the systems (Xy,on,0,), k= 1,2,3 or 4 is topologically
transitive. X1 has two maximal transitive components; the vertically and horizon-
tally periodic configurations. For Xy, k > 1, the following exclusions hold:

XM NO(x)=0Vz e X® and X NO(x) = 0 Vo € XM together with

XM A O@) = 0 and X® 1 0() = 0 Vo € X©,

For k > 2 we also have the weaker exclusion: X©) ¢ O(z) Vz € XM U X®),

Proof: In view of Proposition 1.2. we know that every vertically (or doubly-)
periodic configuration is uniquely determined by specifying how much (£1 or 0)
every third column is shifted with respect to its neighbor three to the left. This

set of vertical off-sets {—1,0, 1}Z is in a one-to-one correspondence with the set
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of vertically (and doubly-) periodic configurations upto a horizontal shift to match
the non-zero columns. Call a legal column of width three with all ones in the left
column a slab. The desired x is built simply by placing first slabs with different
off-sets next to each other, then next to them pairs of slabs with all different pairs of
off-sets and so on. Hereby we exhaust all finite blocks of off-sets and consequently
x must have a dense orbit in vertically periodic configurations.

For k > 1 it is an immediate consequence of the definition of X(¢) that the
orbits of its elements are bounded away from elements in both X and X ().
Moreover the exclusion property of Proposition 2.2. clearly implies that no ele-
ment in X" (X (“)) can have its orbit arbitrarily close to any element in X ()
(X (h) respectively). For k > 2 this can be further refined as follows. Note that for
each element z in X every scenery must by Lemma 2.1. be of the type (1,1,1)
for rule 3 and (2,1, 1) or its cyclic permutation for rule 4. But then O(x) is bounded
away from those configurations in X (¢ in which every scenery is of type (2, 1,0) or
(2,2,0) respectively (for example the doubly periodic configurations generated by
the prototiles in Figure 1b and 1c). 1

Remarks: 1. Also in the £ > 1 case at least two of the transitive components
are simply related: the one in the complement of X" is of course just a 90 degree
rotation of the one outside X (*). Whether these or the other components further

split by a more subtle exclusion/conservation law remains open.

2. The results indicate that configurations are indeed quite rigid. Another sign of
this is that the systems (any k) are of zero topological entropy. This follows from the
observation that a diagonal strip of width four determines the entire configuration.
But the number of different such diagonals of length N is proportional to 2¢V.
Hence the number of different configurations in a N x N square is not proportional
to 2V and the entropy must be zero.

3. Extension

The methods used for Theorem 2.3. suitably refined actually enable one to prove
the basic non-transitivity result in greater generality. We present it here and give
a streamlined proof indicating the modifications.

Suppose that we have s < co symbols S ={0,1,2,...,s — 1} and consider the
subsets of SZ° defined by the rule (ko,k1,...,ks—1) which requires that in every
p X p square there are exactly k; copies of the symbol ¢. Obviously k; > 1 and
S~ k; = p?. Call the subspace Xk Jorseko1)-
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Theorem 3.1.: The shift-action on any of the spaces Xk, k,.,...,k,_,) is topologically

non-transitive.

Proof: If k; = 1 for some symbol ¢ the argument is as in Theorem 2.3. Suppose
that k; > 2 Vi. Given a symbol i define X(")(i) for it essentially as before: it
contains all configurations in which there is somewhere at least k; A p ¢’s in a
horizontal p-block. The exclusion argument of Proposition 2.2. works for this
symbol if 2 (k; A p) —1 > k;. This is equivalent to 1 < k; < 2p — 1 holding. Hence if
k; satisfies these inequalities the sets X (") (i) and X (*)(4) are disjoint (and contain
the orbits starting from them). As before elements in the complement of their union
cannot have dense orbits in either set and the non-transitivity follows.

The remaining (and novel) case is the one where k; < 2p—1 fails for all symbols.
Note that then we consider (p, s)-pairs with s < p?/(2p — 1). Given a symbol i the
configurations in X (") () have in every scenery the symbol i-distributions of the
form (ni,ne,...,np), Yoy > 1 (or its cyclic permutation). On the other hand
X(©)(4) clearly contains e.g. doubly periodic configurations where the i-distribution
is of the form (n},n%,...,0) in every scenery. This is just because k; > 2p — 1 Vi
so in particular any symbol can form an L -shaped area like the symbols 0 does in
Figure 1c. Hence elements of X (") (i) cannot have dense orbits in X () (i) and the

converse holds again by definition. |

The type-preservation in shifting the window seems to produce strong enough argu-
ment only in two dimensions. The natural generalization of the definition for X (*)
for Z%-actions, d > 3 is not useful for this reason and it is unclear how to argue the

higher dimensional case.
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