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The Kink of Cellular Automaton Rule 18
Performs a Random Walk

Kari Eloranta' and Esa Nummelin?
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We give an exact characterization of the movement of a single kink in the
elementary cellular automaton Rule 18. It is a random walk with independent
increments as well as independent delay times. Its statistical parameters are
computed to confirm the earlier simulation results by Grassberger.
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INTRODUCTION

It is quite common in cellular automata that several invariant configura-
tions or phases can be identified. In one dimension the boundaries between
these are called kinks or dislocations. In some cases they move in a regular
fashion like signals carrying information, whereas in other cases their
motion is highly erratic, reflecting the randomness in the initial configura-
tion. The latter situation has been studied empirically by Grassberger" as
a model for deterministic diffusion. The “canonical” case for chaotic kink
motion seems to arise in the context of the elementary Rule 18. Under-
standing this phenomenon would clarify the asymptotic behavior of the
system as indicated by Lind.® Moreover, it is likely that by utilizing block
transformation equivalences many other one-dimensional cellular automata
could then be analyzed analogously to Rule 18. In this note we make
rigorous the idea of a single kink in Rule 18 performing a random walk
and compute its statistical parameters. This confirms the earlier simulation-
based estimates.
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1. SETUP AND RESULT

Let {0, 1} be the set of symbols and E= {0, 1}Z be the set of con-
figurations. A one-dimensional elementary cellular automaton is a dynamical
system on E defined by a blockmap on three neighboring symbols which
commutes with the shift on E. The blockmap of Rule 18 is simply 001+ 1,
100+ 1, while other triples map to zero. Here we follow the standard
numbering of elementary cellular automata (see, e.g., Wolfram®). Later
the Rule 6 on binary doubles is also considered. In order to avoid possible
confusion between these rules, we call them then 18/256 and 6/16 (there are
16 and 256 elementary rules on binary doubles and triples, respectively).

The image of a configuration n= {5(x), xeZ} under the Rule 18
is denoted by 7. A partial configuration is denoted by n[a,b]=
(n(a),..., n(b)), a<b, a,beZ.

A configuration n contains a kink if nla, b]=(1,0,.,0,1) for b—a
odd. The middle of the kink (a+ 5)/2 belongs to Z + 1/2.

Here is a simple illustration of the action of Rule 18 on a piece of
configuration with a single kink in it:

n .- -00101.10101010100
™m .-+ .1000000000000T1 .

2 SR 100000000001 - -« . . (1)
4l I Ll s s5 « @ % wn @

The middle of the kink has been indicated with an underbar. Note that
the middle point first jumps R—L=4—1=3 steps to the right, where
R=4=the number of 1's to the right of the kink until two zeros and
L =1=the same number to the left. After this jump the middle stays put
for a time = R+ L+ 2 =7, after which it again jumps.

Let N be the set of natural numbers and N, the set of nonnegative
integers. Define a subset of E by

F={n | for some a, n(a—2j+1)=n(a+2j)=0, Vje N}

Then any n € F contains at most one kink. The set F is invariant under the
Rule 18.

Let o« be the Bernoulli(1/2) distribution on each of the unspecified
coordinates of F. It is easy to see that the subset in F of those configura-
tions that have a kink is of full measure.

Suppose {t,,ie Ny} are iid. positive random variables. Then T,=
to+ --- +t;_y, Ty=0, is a renewal process on N,. Let I(n)=i for T, <
n<T;,, be the counting process. Let X, be a random variable on Z + 1/2
and {X,},~, an iid. sequence of Z-valued random variables that are
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independent of X,. If {(X,,1,),ieN,} are independem pairs (but not
necessarily within a pair), then S,=X,+ --- + X, defines a (Z + 1/2)-
valued random walk with i.id. delay times.

Our result can now be stated. We use the notation X =Y when
random variables X and Y have the same distribution.

Theorem. Suppose that ne F with a kink is distributed according
to a. If S, denotes the midpoint of the kink in ", then it is a random walk
with iid. delay times. In particular, the ith jump X; =“R—L and the
holding time ¢, = R+ L+ 2, where R and L are geometrically distributed
with parameter 1/2. The random walk has zero drift and squared variation
asymptotically equal to n.

Remark. By ref 3, Bernoulli(1/2) is the only nontrivial invariant
product measure for the Rule 18 on the configurations with every other
entry zero. Hence if o is Bernoulli(p,) distributed with p, #0, 1/2, 1 on F,
the movement of the kink is a nonstationary stochastic process (a random
walk in a temporally inhomogeneous medium).

2. THE PROOF

We first simplify the action of the rule on F to its essence. By adding
a zero to the kink in 5 € F, we obtain a configuration with at least every
other entry zero. These (even- or odd-indexed zeros) are then removed. On
the remaining configuration the rule is now 6/16 on binary doubles. This
transformation is analogous to the linearization of Jen.” Graphically:

000 011 110 101 L (N, 7)
The arrow points to the direction of time.

A simple but important observation is that this ruletable has a spatial
three-way symmetry, ie., it is identical rule when time is changed to run to
either of the directions indicated by the arrows in parentheses.
Equivalently, the rule is permutive, ie., fixing the value of any of the cells
in the triplet defines a permutation.

The Rule 6/16 is formulated as follows. Let E,,= {0, 1}**+"? and E =
EUE,,, where as before E= {0, 1}% Then the cellular automaton map ¥
acts as i(x)=1 if p(x—1/2)#n(x+1/2) and 0 otherwise. Hence
T(E)=E,; and 7(E,;) = E. We distribute the initial configuration n on E
according to Bernoulli(1/2). It follows that for each even n, t"n has also
Bernoulli(1/2) distribution on E, whereas for odd n, t"# has Bernoulli(1/2)
distribution on' E,,. Now any n[a, b]=(1,0,...,0, 1) € E can be designated
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to be a kink with middle point at (a+b)/2. If b—a>2, its successor
is n[a+1/2,b—1/2]. If b—a=1, then the kink jumps and its successor is
nle,d], where c=max{x<a—1/2|%#(x)=1} and d=min{x>
b+1/2)| ip(x)=1}.

We illustrate how the particular kink movement described in (1)
happens under the transformed rule (again the underbar within the 1-block
denotes the middle of the kink):

n »2011111110¢ &=
n .. .10000001 - - -
] ... .1000001 . .. (2)
A T 11« .. 5§58

Now the kink first moves (R— L)/2=(4—1)/2=3/2 steps to the right,
where R =the number of 1’s to the right of the kink until first zero and
L =the same number on the left-hand side. As in the rule 18/256, the
holding time is R+ L+2="7.

From the construction it is now clear that the dynamical systems
(F,t) and (E,7) when started from configurations with one kink are
isomorphic. Hence in particular the movement of the kink is identical up
to scaling. We shall again use the notation X; and ¢, for the ith jump and
holding time of the kink.

The following is the core of the argument.

Lemma. Let us consider the kink movement in the Rule 6/16, ie.,
the system (E, 7) starting from a Bernoulli(1/2) distributed # € E. Suppose
that at time n we have a kink of the form (1, 1) at S, in "5. Then the next
jump is Xy, ; =*(R—L)/2 and the next holding time is #,,,,, =*
R+ L+2, where R, L ~Geom(1/2) are independent of each other and
independent of the past of the walk.

Proof. Suppose that S, =x. It is clear that the history of the kink is
confined to the backward cone with vertices at (x, n) and (x £ (n+ 1)/2, 0)
(see Fig. 1). Equivalently, the past o-field %, of the kink is completely
determined by the configurations in the backward cone at (x, n).
Moreover, n[x—(n+1)/2, x+(n+1)/2] and its complement are inde-
pendent. At step n+— n+ 1 the kink jumps [expands from a (1, 1) kink into
a wider one]. Its right endpoint moves R + 1/2 steps to the right, where R
is the number of ones to the right of the kink before the first zero (see
Fig. 1, in which R=3 and L=35). Given %,, by permutivity the value
at n(x+(n+3)/2) determines the value of every one of the cells
tp(x+(n—i+3)/2), i=0, 1,.., n. Since n(x + (n+ 3)/2) is independent of
Z, 50 is T"np(x + 3/2). This argument iterated implies R ~ Geom(1/2) and its



Kink of CA Rule 18 1135

1§|
No/1
ot 111t W1 1 1o

Fig. 1

independence of Z,. A symmetric argument yields the distribution of L, the
number of ones to the left. The delay time is the height of the new triangle
of zeros surrounded by ones, which equals to R+ L+2. ||

Proof of the Theorem. By the isomorphy of 6/16 and 18/256 on the
special configurations it suffices to just consider the system (E,%). The
Lemma yields the i.i.d. increments and delay times. For Rule 18/256 the
temporal increment is identical, whereas the spatial increment is double
[ see also illustrations (1) and (2)]. Obviously E(X,) =0 hence the expected
drift is

I(n)

(S, - S0 =E( X, %) =E(X) E((n) =0

i=1

by Wald’s identity [/(n) is optional]. The expected squared increment and
expected delay time are both readily computable from R and L and equal
to 4. Since {(X7, t,), ie Ny} are mutually iid. by the Renewal Theorem, we
get that

1 I " E(Xlz)_
22(2 )~y !

im ]

asn—oo. |
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3. CONCLUSION

In the case of several kinks new phenomena appear. Neighboring
kinks annihilate each other and it is known that from an initial configura-
tion with finite support at most one kink survives after a finite time.®
However, the mechanism for the joint motion of even two kinks scems
complicated due to dependence. It needs to be understood well in order to
confirm Lind’s conjectures and fully understand Rule 18.
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