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Abstract. Topological defects or phase boundaries discerned in a number of one-dimensional
cellular automata appear to perform random walks as well as simpler motions, We analyse their
properties rigorously using probabilistic methods. This results in a complete classification in the
partially permutive case. The paper complements the companion paper in this issue where the
general framework of tilings and subpermutivity was introduced and non-probabilistic properties
were analysed.
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Introduction

In this paper we give a comprehensive analysis of random walks in one dimensional cellular
automata. The results are rigorous and based on probabilistic methods with which we
analyse closely related random walks on directed graphs. The paper is mathematically self-
contained and can be read as it is. However an applications-oriented reader’s motivation
would likely be enhanced by at least a superficial acquaintance with the companion paper
[1]. There we present the theogy of partial permutive cellular automata including the physical
motivation to signal/random walk models, the general algebraic structures, the spectrum of
interaction types in the case of multiple walks as well as the subtle walks that still remain
unexplained in some cellular automata.

The structure of the presentation is as follows. We first briefly list the basic definitions
and results concerning partially permutive cellular automata. Some of these can be found in
more elaborated form in [1] but we believe that frequent cross-references there would make
the reading too cumbersome. After this we proceed with identifying the boundary motion
and unveiling its graph theoretic formulation. The graph naturally carries a Markovian
random walk which in turn uniquely determines the possibly non-Markovian motion of the
boundary walk. The analysis then branches into two cases (sections 2.1 and 2.2) depending
on essentially the strength of the subalphabet interaction. In the first case both the degenerate
case of a rectilinearly moving boundary motion and a proper random walk are characterized
via the graph representation. The second case only supports random walks but their structure
is more involved. The mixed case is elaborated in section 2.3. Along the way we present
results that identify the types as well as parameters of the boundary motions explicitly.
Some examples as well as results relevant to e.g. the well documented elementary cellular
automata are also included. However the main bulk of the interface to empirical studies is in
[1] where we have collected some pointers to the earlier approaches to identify topological
defects in lattice models.
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1. Basic definitions

Let S = {0,1,...,|S| — 1} be a finite alphabet i.c. the set of symbols and X = S” and
X1/ = §Z+1/2 be the sets of configurations. Equipped with the product topology they
become compact metric spaces homeomorphic with a Cantor set. Let o be the left shift by
one on a sequence in X U X2 o(x); = xj11Vj. A two-block map f(x;, xj41) defines
the new value of the coordinate x;4, ;.

Definition 1.1. One-dimensional cellular automaton (c.a.) is a dynamical system on
X U X2 defined by a two-block map which commutes with the left shift.

The global map from X to X(/? or from X/? to X defined by requiring F(x);412 =
f(xj,xj41) forall j € Z or Z + 1/2 is continuous and conversely any such continuous map
that commutes with the shift is induced by a block map (argued as in [5]). The block map
f is also called the rule of the automaton.

Our definition is superficially different from the usual definition of a c.a. However as
shown in [1] (definition 1.3) there is a simple way via substitutions or tilings to generate from
an arbitrary n-block map a two-block map on a larger alphabet. Since this is particularly
useful in analysing permutivity we present the definition most natural to the subsequent
analysis. This by no means restricts the applicability of the results—almost all random
walks arising in one-dimensional cellular automata (with a rule of any block length) are
still covered. The binary operation (multiplication) represented by the two-block map is
conveniently expressed in the form of a Cayley table (see e.g. figure 1 below).

The following sets are of paramount importance to this paper.

Definition 1.2. A set S, C S is a right-invariant subalphabet if f(r, S,) = S,, Vr € S, i.e.
f(r,-) is right permutive on S, for each r € S,. Left-invariant subalphabets are defined in
the obvious symmetric way.

One usually wants to consider maximal such subalphabets i.e. ones that cannot be augmented
by any element from the complement without loss of the permutivity property. If this set
is the full alphabet the c.a. is (left/right)-permutive ([5]). If a non-trivial maximal invariant
subalphabet exists we call the c.a. partially permutive. These c.a. are much more abundant
than the permutive ones.

For example in [5] and in [7] permutive rules are considered in detail and a number of
important results are established. Two key ones for our analysis are distilled in the following
theorem. Recall that the Bernoulli measure B(1/|S|, ..., 1/|S}) is the product measure with
uniform weights 1/|S| on symbols.

Theorem 1.1. Permutive cellular automata are onto and preserve the uniform Bernoulli
measure B(1/|S|, ..., 1/|S]) (on X and X/? appropriately).

A set of configurations is generated by a subalphabet S’ if all its elements have their
coordinates in this set.

Corollary 1.1. The action of a partially permutive c.a. on the set of configurations generated
by a permutive subalphabet S' is permutive and preserves the B(1/|S'|, ..., 1/|S'|)-measure.



Random walks in cellular automata 1027

2. Characterization of the boundary motion

From here we only consider the strictly subpermutive case. Since the full alphabet is
rarely referred to we use the symbol § for a subalphabet. When two different permutive
subalphabets exist for a c.a. we have two different permutive actions on configurations
generated by them separately. Let the subalphabets be S and T. The natural question to
ask then is what happens under the c.a. iteration if these two ‘phases’ are mixed, i.e. x € X
consists of blocks from these subalphabets. In this paper we confine the analysis to the basic
case of two semi-infinite blocks generated from the subalphabets. A compact notation for
the set of all such configurations is ST. In order to preserve this set-up under the iteration
of the rule we furthermore require that the interaction between the subalphabets is closed
i.e. that for all s € S and t € T f(s, ) belongs to one of the two subalphabets.

Definition 2.1. Given two subalphabets S and T let A = SNT be the set of ambiguous
symbols. If it is nonempty it is by itself an invariant subalphabet. Ambiguous symbols are
receding i.e. f(s,a) € S\A forall s € S\A, a € A and T identically. The configurations
in the set ST (j) = {{sx)|sx € SVk < j, sy € TVk > j and s}, 5541 ¢ A} are said to have a
boundary point at j + 1/2.

Note that if A is empty i.e. the subalphabets are disjoint then every configuration from ST
is unambiguously in some ST (j). If A # @ then any configuration of the form SAT where
A is a finite block of symbols from A is eventually reduced to the form ST. Therefore the
definition above applies again and we define the location of the boundary point in between
these instances by interpolating.

2.1. The unambiguous interaction

We now proceed to characterize the underlying graphs that determine the motion of the
boundary point. In this section we restrict to the case where f(s,#) is unambiguous
whenever at least one of s and ¢ is unambiguous. The general case is analysed in sections
2.2 and 2.3.

Let S = {s1,52,...,5,) and T = {t;,5,...,1,} be two permutive subalphabets that
generate the set of configurations ST for a two-block map f. Consider the set N of all
boundary pairs (i.e. pairs that can be seen around the boundary point) (s,t), s € S and
t € T. If |A| = k then N has exactly nm — k? elements. Since now f(s,?) belongs to
either S\A or T\ A the c.a. action induces a directed graph G on the node set N. These
nodes are called type I. The fan-out i.e. the number of possible successors of a given node
is n or m depending on whether f(s,t) € T (t dominates) or f(s,t) € S (s dominates).
The fan-in is unrestricted i.e. between zero and nm — k®. The graph can have self-loops but
no parallels and in general it is just weakly connected.

In figure 1 we have the Cayley table of a simple c.a. together with the graph. The
permutive subalphabets are S = {1,2} and T = {3, 4} For simplicity we have chosen the
rule to be symmetric but given the ordering ST we are really only interested in the shaded
elements in the framed square. At the nodes of the graph the pair (s, t) is on top of f(s, t).
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Figure 1.

Note that the ambiguous symbols can, up to bookkeeping, be treated exactly as the
unambiguous symbols. The location of a boundary point is defined by interpolation for
all configurations in a given evolution starting from any element in S7. Hence whenever
the boundary pair is of the form (s,a), s € S\A,a € A we know that the symbol a should
be counted to belong to T ( (a, t) analogously; a is in §).

The node set naturally splits in two subsets. We call N, the set of transient nodes
if for a node n € N, either (i) there exists a transition from it such that after that it is
impossible to re-enter n or (i) a node of type (i) can be reached in a finite number of steps
from n. The complement of N, is the set of recurrent nodes Npc. In the forthcoming
analysis all transition probabilities on the edges will be positive so to obtain the equilibrium
characteristics of the boundary motion it will suffice to restrict ourselves to the set Nrec. In
a moment we will investigate under which conditions this set is strongly connected.

Transitions on G result in a walk {X;};>0 on the graph which in turn uniquely determines
the motion of the boundary point. Depending on the edge chosen the boundary point either
jumps to the right or to the left by 1/2. Let this increment function be A(n). By keeping
track on the partial sum §; = Z A(X;) we will be able to locate the boundary at the ith
period. The walk on the graph is Markowan and the S;-process is stationary but in general
non-Markovian.

We will now present a lemma that explains how the successor node is selected.

Lemma 2.1.1. Suppose that at the ith iterate of the c.a. starting from a configuration in ST
the boundary point is at 1/2. The past of the boundary motion is then determined by the block
from —i/2 to i /2 + 1 endpoints included. Let the boundary pair be (s, t) and f(s,t) = s’
Then the successor node for the graph walk is (s',1") where t' is uniquely determined by the
past and present of the boundary motion and the entry at i /2+2 in the initial configuration.
The left jumps are determined analogously.

Proof. From the spacetime evolution this result becomes obvious. In figure 2. the past
(backward cone of (s, t)) generated by {—i/2,...,i/2+ 1} is the large triangle around the
1/2-line. By the permutivity of the 2-block map given this past the entry at the initial
configuration at i /2+2 determines the entry after one iterate at (i +3)/2. But this argument
can obviously be iterated i + 1 times (the entries under arrow in the figure) and therefore
given the past and present of (s, ) the entry at i /2 + 2 uniquely determines ¢'. a
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Figure 2.

For a generic initial condition on ST the transition probabilities on the graph can be
easily determined. By corollary 1.1 we know that the appropriate Bernoulli product measures
are the invariant distributions on configurations generated by S and 7. The genericity is in
the sense of these measures.

Let Z_ be the set of non-positive integers.

Proposition 2.1.1.  Suppose that on ST (0) we have the product measure which is uniform
ie. B(1/m,...,1/m) on TZ+ and B(1/n, ..., 1/n) on S%-. Then at each node of G the
transition probabilities are uniform.

Proof. Suppose that (s, t) is the boundary pair and f(s,f) = s’. By the Lemma 2.1 we
know that given the past of the boundary pair (s, t) the follower node (s', t') is determined
permutively by a single entry in the positive part of the initial configuration because ¢’ is.
But these symbols are B(1/n, ..., 1/n)-distributed. d

From here we restrict ourselves to the generic case i.e. assume the initial condition to be
distributed as indicated in the proposition above. We call this measure the natural measure.
Note that in view of the proof of lemma 2.1.1 our initial assumption on the permutivity
of S and T can be weakened. When ordered ST we only need S to be left-permutive and
T to be right-permutive.
We now establish the dichotomy of the boundary motions.

Definition 2.1.1. A signal is a boundary motion that eventually moves monotonically to
either right or left with maximum speed i.e. 1/2 at each iterate.

This motion is obviously statistically degenerate i.e. has drift equal to £1/2 and vanishing
dispersion (variance).

Definition 2.1.2. Suppose X is a Markovian random walk with uniform transition
probabilities on the graph G. If the tail of the jump sequence {+1/2} that it generates
is not deterministic the boundary point is said to perform a random walk.

Remark. In many cases the boundary process is also Markovian and then this definition
agrees with the usual definition of a random walk. Due to the generating mechanism we
however feel that it is appropriate to call all boundary motions of the second type random
walks.
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Theorem 2.1.1. The motion of a boundary point starting from an initial configuration
distributed according to the natural measure is either a signal or a random walk.

Proof. We will show that if the boundary motion travels at a speed strictly less than 1/2
then any tail of the 41/2-sequence describing its motion must be non-deterministic.

Let s;, € S appearing in a boundary pair be dominating i.e. f(s;,, T) € S\A. This now
generates a set of chains:

S, = f(sln Tl)’ Sy = f(sizv TZ)a e Sy = f(sik_n Tk—l)» f(siky T) eT
sy =flsi, T, s, = fG1,. Ty ovou st = fGi_Ti_y) fG},,.T)eT

etc. where T; C T, TIUT{UT"U-.. =T, etc. Here we just list all the sequences generated
by different choices of ¢’s in the boundary pair upto a dominating ¢. All these chains have
to be finite to obtain a speed less than 1/2. Moreover the sequences {s;, ..., s; ) need to
be of equal length since otherwise we would have at some iterate ambiguity whether the
motion turns (depending on which {s;,...,s; }-block we follow). So let us consider the
first block. Suppose s;, is located at (j, i). Let s; be its left descendant at (j — 1/2,i + 1).
Now we have f(s;,t) € S for example when / = i; for all £ € T. On the other hand
f(si,t) € T for sy = iy for all t € T. But from lemma 2.1 we know that the entry s, is
determined permutively from the initial condition. Hence if the speed is less than 1/2 we
are bound to have a random choice between a left and a right jump. (W

The proof of the theorem immediately implies the following result which is useful in finding
the type of dynamics directly from the Cayley table. It generalizes the earlier notion of a
dominant symbol.

Corollary 2.1.1. The dominant chain condition, 38" C S such thatVs' € §', f(s',T) € §,
(and its symmetric counterpart for T'-dominance) is a necessary and sufficient condition for
a boundary motion not to be a random walk.

Remark. The c.a. in figure 1 has a dominant symbol # = 4 i.e. a dominant chain 7’ = {4}.
After a finite transient the c.a. exhibits a left propagating signal.

The motion type that the random walk on a given graph can generate need not be unique.
The uniqueness is related to the graph topology in the following fashion.

Theorem 2.1.2.  If the random walk X; restricted to the recurrent part of the graph generates
a boundary random walk the recurrent part must be strongly connected.

Since the random walk on a strongly connected graph uniquely determines the statistical
properties of the boundary motion Theorem 2.1.2 immediately implies a co-existence result.

Corollary 2.1.2. A signal and a boundary random walk or two different boundary random
walks cannot be generated from the same strongly connected graph.

The existence of a signal is a consequence of the existence of a closed (no transitions out)
subgraph in G the nodes of which generates only left or only right jumps. Since several
such subgraphs may exist in a weakly connected graph multiple signals may exist and in
particular propagating to either direction. If however the subgraph is all of G i.e. one of
the subalphabets is dominant only one signal exists.
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Proof of theorem 2.1.2. Pick two recurrent nodes (s, ¢) and (s,¢'). Form the follower
sets F and F’ of both i.e. sets of nodes that can be reached from them in any number of
steps. Their elements are recurrent nodes since a follower of a recurrent node is recurrent.
If the nodeset N is thought as an n x m array minus a k X k corner its subsets F and F’
both contain rows and columns of full length. This is because the existence of a boundary
random walk generated from the set of recurrent nodes guarantees the absence of dominant
chains and hence both left and right jumps are bound to happen starting from either one of
(s, 1) or (s, ¢'). But by the geometry of F and F' they intersect and from any element in
the intersection the starting points can be reached by recurrence. Hence (s, t) and (s, 1)
communicate. O

Since the transition probabilities given by proposition 2.1.1 are positive for all edges
the strong connectedness implies that the random walk on the recurrent part is irreducible
and the nodes are positively recurrent. If the transition probability matrix is denoted by P
then the equilibrium distribution, 7, on the nodes is the solution of 7 P = m. From this
we get the characterization of the parameters of the random walk by a simple application
of the Ergodic Theorem. Let NT C N be the subset of nodes with right jumps i.e.
A(N*) =+1/2.

Theorem 2.1.3. Suppose that we have a c.a. on ST with an unambiguous boundary action.
Let the initial distribution be according to the natural measure. If the resulting boundary
motion S; is a random walk then its expected spatial shift in unit time i.e. the drift is

YN 4 1
= lim - ;A(xi) = XNj Amm(n) = (N*) -5

and the unit squared variation equals to

0? lim — Z (AX) —d)* =) (A(m) —d)’n(n) = 7 —d>.
nENwe
Note that is of course compatlble with our earlier result on the drift and variance of a signal
in the case of a strongly connected graph on Ni.

Example 2.1.1. Suppose that we have the subalphabets § = (1,2} and T = (3,4} and a
rule on {1, 2, 3, 4} represented by a Cayley table in figure 3. Note that it is only slightly
different from that of figure 1. But the corresponding graph is now strongly connected, each
transition has probability 1/2 and the equilibrium distribution s is uniform. The boundary
walk generated is Markovian since {A(X;)} is an independent sequence. By the theorem
the walk has zero drift and variance 1/4.

Figure 3.
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2.2. The ambiguous interaction

If the interaction between the (intersecting) subalpahabets can also result in an ambiguous
symbol the graphs described so far will not suffice. However the extended graphs are
still simple enough to be explicitly analysed. Before getting into that we characterize the
ambiguous interaction and the second node type.

Let S, T and A, |A| = k, be as before and let the set of ambiguous elements be
non-trivial: 1 < k < min{n, m}. Note that the excluded case of A coinciding with one of
the subalphabets is clear—the elements of A being receding implies that there will be a
signal. Moreover let there be a boundary pair (s,7) € M = (S\A) x (T\A) be such that
f(s,1) € A and call it type II. Figure 4 illustrates the evolution of such a pair. The shaded
line indicates the boundary motion according to our definition in the beginning of section
2.

Y

Figure 4.

Recall that the geometric distribution with parameter p € (0, 1), Geom(p), assigns the
probability p'(1 — p) to i € {0,1,2,...}. The symbol ~ stands for distribution.

Lemma 2.2.1. Suppose that the initial configuration on ST(0) is distributed according to
the natural measure. At some iterate i we have at (j, i) a boundary point (s, t) such that
f(s,t) € A ie. type II. Let the next boundary pair (s',t') such that both s' and t' are
non-ambiguous be located at (j + A,i + t). Then the displacement A ~ (R — L)/2 and
the holding time t ~ R + L + 2 where R and L are independent random variables and
R ~ Geom(k/m) and L ~ Geom(k/n). Moreover (s',t') is distributed uniformly over the
allowed pairs.

Proof. By lemma 2.1.1 we know that given the past of (s, f) the entries at time i + | at
locations j = 1 are determined permutively from two entries in the initial configuration. So
the events of obtaining an element in A at these locations have probabilities k/n and k/m
on the left and on the right respectively. But once j — 1 is determined we can iterate the
same argument for j — 2 and so on. Therefore L, the number of ambiguous symbols to
the left of the (ambiguous) symbol at j,i + 1 before the first non-ambiguous symbol, is
distributed according to Geom(k/n) R is treated analogously. Moreover L and R and the
fact that elements of A are receding determine uniquely the jump A and delay t. O
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The fan-in of a type II node is unrestricted and the fan-out equals to (n — k)(m — k). By
the lemma they in fact map onto M.

An important special case is an automaton for which all interactions between S and T
result in an ambiguous symbol. So let us suppose that all interaction on M is of type II.
Then the graph restricted to M is strongly connected (in one step i.e. the directed graph
is complete). Moreover the complement N\M is clearly transient so N = M. Apart
from a possible finite initial transient of jumps on N\M the following result pins down the
resulting motion.

Theorem 2.2.1. Let the subalphabets have the cardinalities |S| = n, |T| = m and |A| =k,
1 < k < min{n, m). Suppose that f(s,t) € A whenever neither s nor t is ambiguous. Let
the random variables A and t be as in the lemma. Then the boundary motion performs a
random walk with independent and identically distributed holding times of length T and i.i.d.
increments A. The drift of the motion is

_E) k(n —m)

©E(t)  2nm—(n+m)k
and the unit variance equals to

o k m(n — k) n(m—k))'
42nm —k(n+m)) \ m—k n—k

In particular in the symmetric case n = m the drift vanishes and the dispersion reduces to
k/(4n — 4k).

Proof. We first observe that in computing A and 7 we can restrict to the case where 5" = s
and ¢ = ¢ in lemma 2.2. But this means that all the nodes of the the generating graph
have same (A, t)-distributions associated with them. Moreover since the pairs (A, 7) at
different nodes are independent we only need to consider the case of a graph with a single
node and a loop. This generates a boundary random walk with independent increments A
delayed by 7 iterates. Now the delays {;}i>o form a recurrent renewal process hence an
application of the Renewal Theorem to the cumulative jumps {S;};>o yields the drift

12 E(A)
d=lim =Y AX)) = —
:i'&t; (Xj E(1)

where I(¢) is the usual counting function i.e. the number of delay periods up to time ¢. But
by the independence of L and R the expectations are easily calculated to be

k(n — m) 2nm — nk — mk
E(A) = —m8M8™— E = ——,
B = e —m—b = —om-n
Since 02(A) = (o*(L)+ o?(R)) /4 the unit variance formula follows via a similar
argument. u

Remarks. 1. By choosing n = m = 2 and k = 1 this result covers a number of random
walks arising e.g. in the context of elementary c.a. In particular the walks in the rules 18
(treated in [2]) and rule 22 (see [1]) are just special cases of the theorem above.

2. It is possible to reduce the ambiguous case to the unambiguous one via an extension.
If each of the ambiguous symbols is duplicated and assigned to one of the subalphabets
the new subalphabets are disjoint. On the enlargened alphabet one can then define a new
c.a. dynamically identical to the original one (i.e. possessing statistically identical boundary
motion).
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2.3. The mixed case

The previous results make the general case of unrestricted f (s, f) now accessible. We still
consider a directed graph G with nm — k? nodes of the two types described and the random
walk X; on it. Let again M = (S\A) x (T\A). Since off-M entries do not form a closed
subgraph (symbols in A are receding) the novel case to be treated arises when M contains
nodes of both type.

We recall that the graph restricted to type II nodes is strongly connected and from any
node in this set we map onto M. So in terms of recurrence the critical question is how do
the follower sets of the nodes of type I lie in M. If their union is in the complement of
type II nodes then N is of type I and we reduce to the case treated in section 2.1 (this
phenomenon is analogous to the dominant chain case in section 2.1). Note also that the size
of such type I invariant set is bounded from below by the cardinality of A (just because
(s, @) has to be in the set if s is for all @ € A). Hence the larger A is the harder it is to
type I to confine the action on itself.

Let Ny and Ny be a partition of Ny into type I and II nodes and let N1+ C Np be the
subset of nodes with right jumps. Assume that the graph on Ny is strongly connected and
denote again by P and 7 is the transition probability matrix and equilibrium distribution
on Nee. Define the expected displacement and visit time at a node by

_ 1 1
A= § E(A(m)m(n) = (N{") — 3+ (5 + E(AINu)) 7(Nn)
nEN

and
A Z E(t(n))m(n) = m(Ni) + E(t|Ny)m (Nyp).

NENpe

These can be readily evaluated using theorem 2.2.1.

Theorem 2.3.1. Let a c.a. act on ST with the natural measure. Suppose that the graph on
Niec is strongly connected and Ny # . Then the boundary motion generated is a stationary
random walk with drift d = A/V and variance

o= % I(% +K)2 —2An (N") + (E ((A =A)Y?|Ny) — (% +K>2) n (N“)] :

Remark. For Ny = @ and Ny = M we have the unambiguous and ambiguous case
respectively so the novelty here appears when @ # Ny # M. Nn = 0@ is excluded from the
theorem since then (and only then) degeneracy can occur.

Proof. By the assumptions on the existence and communication of the type I and Il nodes
we know that a unique random walk prevails and is stationary. For the drift we write

1 1(1) I(t) 1 1)
?;A(Xj) = T[m ;A(Xj)]

where I(t) counts the number of nodes visited by time ¢. The graph walk X; is positive
recurrent on Ny so by the Renewal Theorem I(t)/t — 1 /V. Moreover the the random
variable A is integrable (on N it is bounded and on Ny it is the difference between geometric
random variables) so by the Ergodic Theorem the limit / — oo of the remaining Cesaro
average equals to A.

The asymptotic squared variation is obtained via an analogous argument and some
manipulation starting from the expression 1/t E;L’}(A(X i) —A)2 O
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All the expressions in the theorem can be explicitly computed. Perhaps an application is in
order to illustrate this.

Example 2.3.1. Consider the simplest case where nodes of both type can co-exist in the
recurrent component. Let S = {0,1}, T = {0,2,3} so A = {0} and N consists of five
nodes. We have a choice in terms of which node in M is of which type and which ones
in its complement are transient. Of these six c.a. two have a dominant symbol i.e. they
generate a signal. The remaining four yield akin random walks and are all analysed in a
similar fashion. In figure 5 we have illustrated one of these (if the shaded element in the
Cayley table were equal to 3 a signal-case would result). The two rightmost elements of the
graph are transient. Clearly N, = {(1), (2), (3)}, N,+ = N; = {(1), (3)} and Ny = {(2)}.

w N =0

Figure 5.

The transition matrix and equilibrium visit probabilities are

)

it
Wit

and T = (%.

W= O W=
[T TSI

The (A, t)-pair associated with the nodes (1) and (3) is (1/2,1). At (2) it has the
distribution indicated in lemma 2.2.1. The expectation E(A, t) equals to (—1/4, 7/2)
by the formulae in the proof of theorem 2.2.1. Hence by theorem 2.3.1 a boundary random
walk is generated and with some computation one finds that the unit drift equals to 1/10
and variance approximately to 0.205. The reader is to judge whether it is obvious that the
walk drifts so slowly to the right although the only sure transitions are to this direction (at
type I nodes).

When the type II is recurrent no co-existence result of the type discussed in section 2.1 is
possible. However even though the random walk that theorem 2.3.1. specifies is unique
it can be rather bizarre and actually look like two distinctly different boundary motions
intertwined. Our final example shows how to ‘design’ c.a. like this.

Example 2.3.2. Suppose that n = m > k = 1 and that there are unambiguous special
symbols § and 7 such that f(5,¢) = § except for t = I. Also let f(s,) =1 for all 5 except
for s = sy. Let all the rest of the nodes in M = (S\A) x (T'\A) be of type II. Now the
theorem applies but by design the sets N; and Ny communicate only with difficulty ie.
jumps between them are rare. They also generate very different motions. The type I motion
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consists of long monotone sequences of jumps of the same sign and size (1/2) so that the
motion is a “piecewise signal”. The right propagating boundary point eventually switches
into a left propagating one whereas this ultimately (upon visit to (s, f) gives birth to a type
II symmetric random walk (by theorem 2.2.1 since n = m). This in turn is longlived since
type II covers nearly all of M but it is not immortal because type II nodes are onto this set.

Clearly this design can be widely varied by changing S or T, by introducing bias to
either type, by extending A (and hence Nj) etc. and still generate pairs of very distinct and
persistent motions. The key design principle is to partition the graph on the recurrent nodes
into two almost disconnected parts supported by N; and Ny each generating a distinctly
different motion.

The physical phenomenon this example seems to suggests is that of metastability.
Considering the amount of freedom in our example this behaviour can indeed be widespread
in all but the simplest one-dimensional cellular automata.
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