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0. Introduction

The 20-vertex model on the triangular lattice and the 18-vertex model on the
Kagomé lattice are analogs ice model on the square lattice. In this note we in-
vestigate the basic properties of their bounded versions. This serves two purposes.
Firstly this complements the various studies of the infinite unbounded models and
answers the question on the influence of the boundary posed by Kasteleyn ([K]).
Secondly we hope to contribute to the unification of the theories of lattice statistical
mechanics, higher dimensional symbolic dynamics and tilings that has been worked
on for some time now (starting from [CL], [T] etc.).

Our results show that the 20~vértex model on triangular lattice, 18-vertex
model on Kagomé lattice and square ice can be analyzed with similar means. They
have analogous cycle structure which ultimately facilitates their computation with
simple and efficient algorithms. Height works in the same way in these models and
the boundary effects it forces are qualitatively similar in these three models. There
is sharp a demarcation of temperate and frozen subdomains akin to the Arctic
Circle Phenomenon in dominoes ([JPS]). The lattice independence is in a notable
contrast with e.g. the hard hexagon and hard square models where the underlying
lattice (triangular or square) forces completely different analysis ([B]). Because of
the close connections between the bounded 6/18/20-vertex models we refer for the
results on six-vertex model in [E] and concentrate here on the novel features. We
make however an effort to make this paper self-contained so that the reader can

grasp the main ideas and results if not all the proofs just from here.

1. Set-up

Vertex-models of the Statistical Mechanics can be defined on various lattices,
in the planar case most commonly on square, triangular, hexagonal and Kagomé-
lattices. In these models all the nearest neighbor lattice sites are connected with

arrows. Their global ensemble of orientations defines the configuration.

Definition 1.1.: A vertex configuration at a point on the triangular lattice is
legal for the 20-vertex rule if there are three incoming and three outgoing arrows
at that lattice point. Similarly a vertex configuration is legal for the 18-vertex

rule on the Kagomé lattice if there are two incoming and two outgoing arrows. If
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there is a legal vertex configuration at every lattice site on the triangular/Kagomé

lattice the arrow configuration is legal for the 20/18-vertex model.

Remarks: 1. In the square lattice case the six-vertex rule accepts vertices with
two incoming and two outgoing arrows. It is called the ice-rule because of its physi-
cal interpretation (see [L]). Although this physical interpretation does not carry over
to the set-up in the Definition, for simplicity we call those rules ice-type.

2. A rule of this kind necessarily requires even vertex degree. Hence in the pla-
nar case e.g. hexagonal or octagon-square-lattice are not compatible with the rule.
Among the lattices that arise from the 11 Archimedean tilings only square, trian-
gular, Kagomé and one exotic lattice (of type (3.4.6.4), see [GS]) are of even vertex

degree.

The possible vertex configurations together with their multiplicities (accounting ro-
tations and reflections) are as indicated in Figure 1., triangular on the left, Kagomé
on the right. The names in the Definition refer to the total number of possible

vertex configurations.
6 12 2 6 6 6

Figure 1a, b. Vertex configurations and their multiplicities.

We study these models on a hexagonal domain. A N-hexagon in the case of
the triangular lattice is a domain which is oriented along the lattice axes with NV
boundary arrows along each edge, IV even. Or equivalently we can require that along
each edge there are IN/2 lattice sites with all six arrows attached to them. Figure
2a. illustrates the area around leftmost corner of such hexagon (the boundary will
have six-fold symmetry). The boundary arrows, 6/N — 6 in total, are rendered
bold. They will be fixed and the main problem will be determining when and how
the interior arrows (lighter) can be arranged into a legal configuration.

The other simple and natural domain shapes on the lattice, a unilateral triangle

and a rhombus turn out to be somewhat restrictive due to the acute corners. On
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the hexagonal domain we will be able to illustrate both “frozen ” and “temperate”
configurations and their coexistence as in the diamond in square lattice case ([E]).

The dual lattice of the triangular lattice is the hexagonal lattice. Every lattice
site is the center of a minimal (unit) hexagon the boundary of which we should
think having clockwise orientation. By the 20-vertex rule the total flux across this
boundary is zero (ingoing arrow counts +1, outgoing —1). Consider the maximal
dual lattice loop on the domain, the boundary loop (the dual lattice edges of this
loop still cross arrows in the N-hexagon). It is the sum of all the directed unit
hexagons in the dual lattice inside the domain. Hence if the configuration inside

the domain is legal then the flux across the boundary loop vanishes.

In the Kagomé-lattice N-hexagon has N lattice sites and N/2-arrows along each
edge. Figure 2c. illustrates the leftmost corner of such hexagon. The bold arrows
are the fixed boundary arrows. Because of the ice-rule the flux around each lattice
point vanishes in this set-up as well. Therefore a legal fill-in of a hexagon will have

zero boundary flux.

Figure 2a, b, c¢. Crossing rule and sample configurations with heights.

Let C be the set of legal ice configurations on a given triangular lattice hexagon
and let D, the dual cover, denote the finite subset of the hexagonal lattice that
has the property that an edge connecting a nearest neighbor pair of vertices from
D crosses an arrow in ¢ € C.

The height, h : C x D — Z, is an extremely useful function in analyzing
ice-type models. Its increments on D are defined by the crossing rule in Figure 2b.
The light arrow indicates the edge on the dual lattice that we move along and the
bold marks the configuration arrow. The rules apply in all possible rotations. Note

that height around a closed loop in D vanishes (since this is the same as computing
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the flux across that loop). Hence h is independent of the path along which it was
computed. To be unique it needs to be specified at one base point which we choose
to be the leftmost dual lattice point (starred). In Figure 2a. we have indicated the
heights with the choice that at the base point height vanishes.

The dual of the Kagomé lattice is the rhombus-lattice (corresponding to Laves
tiling of type [3.6.3.6]). The definition of height on it as above is straightforward

and we have indicated its values in Figure 2c.

The three cases when height increases/decreases at a maximal rate or alternates in
value along a path in the dual lattice will be important in later considerations. As
the boundary specification will be critical we have also chosen to illustrate this on
the boundaries in Figure 2. The boundary arrows in the lower halfs of the samples
in both triangular and Kagomé-case are in an ensemble of maximal tilt as we follow
the boundary. The upper half of the boundary arrows illustrate the alternating case.

Subsequently we refer these special arrangements as having tilt +1 or 0.

2. Connectivity

The ice-type local arrow parity implemented in Definition 1.1. has far reaching
consequences on the global structure of the configuration ensembles independent of
the underlying lattice. We now elaborate on this utilizing as well as extending the

results in the square lattice case in [E].

Consider a legal triangular or Kagomé ice configuration. Suppose that we can find
a closed unidirectional path of configuration arrows in it (or a path from infinity
to infinity). Reversing this directed cycle i.e. flipping every arrow on the cycle
results in an other legal configuration since the rule at each vertex is respected.
Existence of a directed cycle is therefore related to the non-uniqueness of the fill-in:
a boundary arrangement of arrows that allows a fill-in which has an off-boundary

cycle allows in fact multiple fill-ins.

Definition 2.1.: Call the smallest lattice triangle a 1-triangle. The orientation
A is even and 7 is odd. On the Kagomé lattice we have additionally a minimal

hexagon, a 1-hexagon. If these are unidirectional we call them 1-cyles.
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In the case of a finite cycle one can show by utilizing flux as in the square lattice
case (see [E]) that in fact

Proposition 2.2.: A unidirectional cycle always encloses a 1-cycle.

We say that a cycle is off-boundary if it does not contain any of the (fixed)
boundary arrows. Define a bounded frozen configuration to be one without off-
boundary 1-cycles. Its opposite is the temperate configuration which we define as
one having a directed cycle boundary.

In Figure 2a. and c. sample configurations contain 1-cycles — they are the ones
with height underlined. The samples are typical in the sense that neither has a
cycle boundary yet they have 1-cycles. Except for special boundary configurations
the fill-in will exhibit a coexistence of frozen and temperate subdomains.

Related to the 1-cycles there is a simple but useful notion which we will need
in the proof of our main theorem. In Figure 3. the infinite wedges C; rooted at
the vertices of the 1-cycles are called contact sectors. For the triangle oriented
upside down we reflect the wedges and for 1-hexagon we have for clarity indicated

only the odd sectors.

Figure 3a, b. Contact sectors.

The main result that the cycle structure of configurations implies for both triangular

and Kagomé ice is the following.

Theorem 2.3.: The set of configurations with common boundary arrows on a N-
hexagon is connected under 1-cycle reversals i.e. two such configurations can be

transformed to each other with a finite sequence of 1-cycle reversals.

Proof: The argument is similar “lexicographic sweep” as in the square case with
some refinements (see [E]). When we arrive to a lattice point | where there is the

next mismatch between the two configurations under comparison, the situation in
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triangular lattice looks like in Figure 4a. L denotes the “front” above which all
vertex configurations in the two configurations match. In the Kagomé case we may
encounter three different arrangements, two of which are in Figures 4b, c. (the third
is like the rightmost, only rotated 60 degrees clockwise).

Consider first the case on triangular lattice. The three arrows a — ¢ cannot all
be in or all out since in that case there cannot be a mismatch. So among arrows
1 — 3 there is a 2-1 or 1-2 division between ingoing and outgoing arrows. Hence we
can always find among them a pair ((1,2), (1,3) or (2,3)), same pair on both con-
figurations, so that the arrows in the pairs are unidirectional but oriented opposite
in the two configurations. One then extends these 2-paths to closed off-boundary
cycles, same cycles but with opposite orientations, on the two configurations.

Pick one of the configurations e.g. the one with clockwise oriented cycle, O;.
By Proposition 2.2. inside it there is at least one 1-cycle of some type. Denote their
collection by {C;}. Choose two of its contact sectors in such a way that they do
not overlap and do not contain the point of mismatch . One can easily show that
it is possible to find two directed paths, one in each of the contact sectors, which
connect the 1-cycle to O;. Moreover the orientations of these paths are such that a
new clockwise directed cycle is formed that passes through [, along the edge of the
l-cycle and is contained in the domain bounded by O;. This construction is done
to all of the 1l-cycles inside O;. Finally define the natural minimal directed cycle
along these new cycles inside O; and call it 01.

Now some the 1l-cycles inside O; are on the boundary of the O, and none
are strictly in its interior. By reversing these cycles if necessary we obtain a new
directed cycle O, with the property that all of the 1-cycles {C;} are left outside it.
Moreover O encloses a strictly smaller area than O;, all inside it.

Applying the argument above to Oz, O3 and so on finally forces a 1-cycle
that has [ as its vertex. Hence we correct a mismatch at /. Note that if the path O,
involved the pair (1, 3) we need a second application of this argument, now to a loop
through (1,2) or (2,3), whichever pair is still mismatched in the two configurations.
After this all arrows at [ match and the front L moves to the next lexicographic
location to check for a mismatch.

For the Kagomé lattice the argument is similar. Whether the 1-cycle is a 1-

triangle or 1-hexagon makes no difference except in the choice of the contact sectors.
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Note that for Kagomé lattice (as well as square lattice) one pass of the argument

above for each [ is sufficient to correct the mismatch. |

Figure 4a, b, c. Vertex configuration mismatch.

Remark: Since the “sweep” is a rather general procedure to deal with the config-
uration, the result will hold for more general domain geometries as well. But since
our presentation is geared towards analyzing boundary dependency in a hexagonal

domain we refrain from pursuing this.

The result is optimal: no smaller set of elementary moves will guarantee connectiv-
ity. This follows simply from counterexamples.

Suppose that we have a configuration on the triangular lattice where each of
the lattice arrows is directed either towards 1, 3 or 5 o’clock. Then reverse all the
arrows on one of the 1 o’clock and 5 o’clock lattice lines. Cut a N-hexagon out
from this so that the intersection of these lattice lines is at the center. The patch
that we see at the center of the hexagon looks like Figure 5a.

Reversing the 1-triangle at C' will obviously not affect the boundary arrows i.e.
we get another configuration, call it H, compatible with the boundary configuration.
If we are subsequently only allowed to act with A-reversals there will be only two
such triangles to work on, the one at T in H and the one below C. But it is easy to
see that reversing these and any other directed A-cycles will never yield a directed
cycle outside the two acute wedges defined by the bold lines. Hence two sides of C'
will never be returned to their original orientation.

In the case of Kagomé lattice we generate a configuration as above, this time
from arrow lines pointing towards 3, 7 and 11 o’clock. This configuration has has
the property that all 1-triangles are directed (see Figure 5b.). If we reverse any one
of them, say C, the new configuration is compatible with the boundary but still has
no directed 1-hexagons. Notice that even if only the reversal of 17 is forbidden we
are still stuck. Reversing C cannot be undone with A-actions and all the 1-hexagons

will still remain undirected.



Finally if the configuration is generated in an alternating fashion from arrow-
lines to directions 1 and 7, 3 and 9 and 5 and 11 o’clock we can see in it a patch
like Figure 5c. If we reverse the 1-hexagon, the 1-triangles around it will become
directed but the David’s star is isolated from the 1-cycle reversals outside it, so its

original orientations cannot be returned.

Figure 5a, b, c. Restricted action.

Hence we can conclude from these counterexamples a slight sharpening to the The-

orem above.

Proposition 2.4.: The connectivity result of Theorem 2.3. fails if
(i) in the triangular lattice case not both types of directed 1-triangles are reversible
(ii) in the Kagomé lattice case not all three directed 1-cycle types are reversible.

3. Boundary dependency

Perhaps the most significant consequence of Theorem 2.3. is that it paves the way
to efficient generation the configurations with a given boundary configuration. We

now proceed in indicating how this is done and then present some simulation results.

The arrows of the triangular lattice can be viewed as an array of either just even or
just odd oriented 1-triangles. Call their restrictions to the N-hexagon L. and L,
respectively.

On the triangle arrays we define two local update rules. If an off-boundary
even/odd directed 1-cycle is encountered, it is reversed independently with probabil-
ity 1/2 and also its odd/even nearest neighbor 1-triangles are updated accordingly.
These rules immediately give global random maps F, and F, which check 1-cycles
on L. and L, respectively and update the arrow configuration on both. They define
a probabilistic cellular automaton (pca) action on the configurations.
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On the Kagomé lattice we additionally define a local rule reversing a directed
1-hexagon with probability 1/2 and updating the six neighboring 1-triangles. Call
its global map Fj. The updating sequence {Fe, F;, F,,, F;,} defines the pca cycle.

Given any initial configuration by Theorem 2.3. the pcas above will almost
surely generate any configuration compatible with the boundary configuration of
the initial one. The choice of probability 1/2 for the flip is for maximal speed.
In the Kagomé case the choice of checking the 1-hexagons twice as often as the
even/odd triangles, is to the same end.

As with any Monte Carlo scheme we expect this pca action to relax from
every initial configuration to the configuration distribution corresponding to the
measure of maximal entropy conditioned to the boundary configuration. Hence the
configurations that we observe along the orbit of the pca — once it has reached the
equilibrium — should be typical to that measure. We do not know of any rigorous
relaxation rate result applicable here but in all simulations performed it seemed

high and is likely to be exponential.

By boundary height of a configuration we mean the restriction of height to the
boundary of the dual cover D (see Section 1.). Following this boundary loop we
only cross boundary arrows.

Suppose that the boundary height is on each edge of tilt 0 or +1. Let the sig-
nature of the boundary be the six-vector that we get by recording the tilts starting
from the base point and circumambulating the boundary of D counterclockwise.

For both triangular and Kagomé lattice the signature (+1,+1,0,—1,—1,0)
and its cyclic permutations correspond to perfectly ordered configurations. They
are frozen i.e. contain no directed l-cycles.

The signature (0,0,0,0,0,0) is the maximally disordered case and the configu-
rations are temperate. Now the boundary arrows form directed paths which are at
least the length of the edge. The case where the entire boundary is a directed cycle
has this signature and clearly has the largest directed cycle in any hexagon.

The choice (+1,—1,+1,~1,+1, —1) recorded in Figure 6. top left. This height
choice leads to the coexistence of frozen and temperate domains. Figure 6. middle
left illustrates the even 1-cycle flip distribution on triangular 102-hexagon. Here we
have recorded every even 1-triangle reversal during the iterates 13 — 19 x 10°. The

rendering is that of their cumulative totals during this period when the system was
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already close to equilibrium. Darker cells indicate higher flip activity. The light
grey background is just to make the hexagon visible. There is a clear demarcation
between corner areas where there is essentially no activity and interior where the
flip distribution is fairly uniform.

Figure 6. top right, shows another boundary condition. Each edge is now split
in the middle into a segments of maximal tilt +1 in an alternating fashion. It is
easy to see that this choice in fact freezes a lozenge shaped area at each corner (one
of which is indicated). Figure 6, middle right illustrates the cumulative even 1-cycle
reversal distribution at equilibrium between iterates 6 — 12 x 10%. In both this and
the previous simulation the odd 1-cycles did show an identical distribution.

In the Kagomé case these are the simplest interesting boundary conditions
as well. Figure 6. bottom row shows the cumulative cycle counts from iterates
12—24 x10® and 6—12 x 10? for the two boundary choices (system again essentially
at equilibrium). The coarser appearance of the images is due to the fact that the
1-cycle density is now half of that in the triangular case.

The rendering shows both even 1-cycle and 1-hexagon flips. The darker entries
at the center indicate the array of triangles. At the center their flip frequency
is about five times that for 1-hexagons. Note that if the arrows were laid down
independently and with probability 1/2 to each orientation on a given edge, the ratio
of the flip probabilities of an even 1-triangle to a 1-hexagon would be eight. Since
our pca checks the 1-hexagons twice as often as even 1-triangles it would generate a
flip probability ratio exactly four for that distribution. So the maximally disordered
vertex-configurations, the statistics of which we expect to see at the center, are some
distance from uniform Bernoulli.

While the fine structure of the interior in Figure 6. depends on the algorithm,
the actual arrow distribution at the equilibrium does not. ‘And most importantly
the key result, the sharp demarcation of frozen and tempered subdomains akin to

the Arctic Circle Theorem is plain in Figure 6.
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Figure 6. Top: signatures, middle: triangular, bottom: Kagomé.
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