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ABSTRACT

A deterministic counterpart is introduced to the voter model studied in probabilistic particle
systems. Here we investigate the ingredients of the rule as well as its annealing domain dynamics.
It is a representative from a larger class of cellular automata with the common property that they all
show behavior previously associated to lattice models with strong independence assumptions. The
results indicate that purely deterministic schemes are capable of producing behavior characteristic
to disordered systems of statistical mechanics.

INTRODUCTION

We will introduce design principles by which one can build up cellular automata (c.a.) rules with
dynamical properties remarkably close to the probabilistic voter models (see e.g. Durrett). The
motivation for this comes from the currently unsatisfactory level of understanding of the dynamical
capabilities of c.a. In particular their statistical mechanics has been described in a number of
simulation studies but the fundamental theory is missing. Our design principles not only create
ideal c.a. in the sense of statistical mechanics but also sheds some light into why some earlier rules
behave as they do (see e.g. Toffoli and Margolus).

The one-dimensional theory has been established in earlier work (Eloranta 1993 a,b,c). Here we
will study the two-dimensional case where qualitatively new phenomena appear as a consequence
of the neighborhood topology. This paper is a introduction to this new behavior — the work on a
larger class of rules with annealing as well as critical dynamics will appear later.

The presentation is structured as follows. We first introduce a splitting of a c.a. rule which is
performed to see how a stationary source of randomness can prevail in a deterministic rule. This
structure ensures a maximal degree of mixing and facilitates a pseudorandom contour motion.
Thereafter we determine the appropriate (“voter”) neighborhood action and show why it implies
the annealing dynamics.

1. THE MIXING STRUCTURE

Let S = {0.1,2,3} be a set of symbols, the alphabet. Let L be the square lattice Z? and LO72) jts
dual lattice (Z + 1/2)2. The sets X = SL and X(1/2) = SL" are the sets of configurations. On
both of these we have the natural coordinate actions, the horizontal and vertical shifts defined by
(Ghr)uh‘m = Z(j,+1,j,) and ("vx)(jp..j.,) = Z(j, j.+1) for z € X",

Definition 1.1. The map on four symbols in a 2 x 2 square neighborhood f : St 3 Sisa
block map or a cellular automaton rule. A cellular automaton is the map F : X — X(/2) and
F: X0/2) 4 X obtained by requiring that the cellular automaton rule commutes with the shifts
o and oy.

To index the space-time configurations we will subsequently use j as spatial indices and the
superindex i as temporal index indicating the iteration of the c.a.

The representation given in the Definition 1.1. is a particularly useful because it enables one to
distinguish invariant sets of configurations.



Definition 1.2. The c.a. map is partially permutive if it has an invariant subalphabet: there
exists ' C S such that f(s;,s2,83,5') = S’ for any s; € S" and the same equation holds for any
permutation of the arguments in f.

The global configurations §’* and S’/ generated from an invariant subalphabet S’ are invariant
under F. It seems appropriate to call them pure phases since they play that physical role in our
model as will be seen.

The symbol set § contains four symbols just for the purpose of defining the basic set-up. Moreover
we assume that it partitions into two invariant subalphabets of equal size. To define the rules we
represent the symbols in two parts. For each symbol we write s = (a,d) where a € 4 = {0,1}
and d € D = {0,1}. A is the set of subalphabets and D is the set of digits. In order to see all
possible subalphabet interaction phenomena we would need three of them but two suffices for the
basic phenomena to appear. The set D has to be nontrivial for the c.a. to have a non-singular
probabilistic structure as we will see.

To streamline the formalism let 8 = (s, 82, 83,54), & = (@1,a2,a3,a4) and d = (d;,d2,d3,ds) be
the symbol, subalphabet and digit vectors in a 2 x 2 neighborhood (oriented as (NW, NE, SE,
SW)). Our rules are of then of the form

1) = (4% (@),Q@).

The table A = {A®} is called the assignment array. As functions the arrays A and Q must map
asA: S5 Aand Q: D* =5 D.

The stationarity of the c.a. is at the level of the digit evolution. Suppose that Q is the map

4
Q: d— z:d.- (mod 2). (1.1)

i=1

This map has the property that the global c.a. map P induced by it (Q is a c.a. rule on digits)

is permutive and hence preserves the uniform Bernoulli measure: pup = y(l;/ 2 o P~1. Here UD
and pg/ ? are these measures supported on D% and pL? respectively. The preservation follows
directly from the fact that the map P is an endomorphism of the full shift i.e. shift-action on D*
(argued as the one-dimensional case, see Coven and Paul). Since we want a non-singular measure

to be preserved we must exclude the case where D is a singleton.

(1.1) is a generalization of the basic one-dimensional rule introduced by Ledrappier. It is one of
several rules providing the maximal degree of mixing in the digit evolution. Briefly it is described
as follows. A finite sequence of measures up and pg/ ? can be coupled to get a measure »([0,i — 1))
on the cylinder set of i-step evolutions of P from 0 to i — 1 starting from the invariant distribution.
Using a standard extension argument this yields a measure v on the set of bi-infinite evolutions of

the c.a. P. Alternatively one view this as the construction of the inverse limit (see Petersen).

Let o, be the time-like shift i.e. shift in the direction of the c.a. action: (a:z);, ; ) = (Pz)(j,,j,)

for all z € DL"” . From the work of Kitchens and Schmidt it follows that the joint action of the
three shifts is asymptotically independent i.e.

v (a{." oivoi(A)N B) — v (A)v(B)

as |jn| + |70] + |i] = oo for any measurable A and B.

The stationarity i.e. the o,-invariance of v is all that we need from the above formulation in this
paper. We do not utilize the mixing property directly but it is stated since our c.a. should be
compared to a probabilistic voter scheme. We also note this is the maximal degree of mixing in
the context of deterministic c.a. The shift in the time direction for such c.a. cannot have positive
entropy hence independence is bound to be broken in a serious way in this direction. It is of interest
to see if the remaining degree of independence is sufficient to provide us with dynamics qualitatively
similar to that observed in probabilistic models that use heavy independence assumptions.

The preservation of the uniform Bernoulli measure on digits implies that a good initial measure p
for the F iteration is such that its marginal on the digits is ptp or pg/ )| We assume this for the
rest of the paper.
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2.1. THE VOTER RULE

Having defined the underlying digit dynamics we now complete the definition of the rule. First
we record the principles for the assignment arrays which hopefully make it more palatable from
physical point of view (for a physicists approach to this type of models see Baxter). In doing this
the necessity of the assumptions on the digit evolution will become clear.

The subalphabets represent our two voter populations or the + and —-phasesin a physical medium.
A homogenous 2 x 2 neighborhood supports its kind - this is the subalphabet invariance as in Def-
inition 1.2. Hence the rule should preserve both of the subalphabets. On the boundary between
two domains the majority opinion/phase in a 2 x 2 neighborhood should dominate in the determi-
nation of the update in the dual lattice. In case of an even 2-2-distribution of the subalphabets the
assignment should be uniformly Bernoulli distributed at all times. This is where the stationarity
enters the picture.

Furthermore we require that there is no preference in favor of either class in the dynamics and
that the rule is isotropic on the square lattice L. The former requirement amounts formally to
invariance under flipping the subalphabet assignment: f ot =t o f where ¢(a) = 1 —a whereas the
latter corresponds to the rule being invariant under cyclic permutations of the arguments in the
neighborhood vector (which we have ordered cyclically). Unfortunately the last two requirements
can be simultaneously satisfied only when there is an uneven representation of the two subalpha-
bets in a neighborhood. To see the problem in a Z2-neighborhood consider two arrangements of
subalphabets, a = (0,0,1,1) and a = (1,1,0,0). An isotropic block map would give the same as-
signments in both cases whereas conjugacy invariant map would force a flip in the assignment. In
our rule we impose conjugacy invariance first. Moreover isotropy can be recaptured in an average
form as seen below. Note also that the rule will automatically be isotropic on digits since the
update depends only on the sum 2: d;.

The assignment array of the majority voter rule is defined as follows. By even representation we
mean that the two subalphabets both have two symbols in the neighborhood.

a, if a; = a for at least three i’s
A® (d)=¢ a1+ EL, d; (mod 2) at even times if even representation
l—a) + Z:=1 d; (mod 2) at odd times if even representation

By the first part of the definition the action on the subalphabets is permutive and the majority
domination explains the name. In the case of even representation of subalphabets in the neigh-
borhood the checkerboard labeling given is just one of the possibilities. The key property that it
Las is that flipping of any single digit flips the labeling as well. Note that by our assumption that
the measure on digits is always uniform Bernoulli both of the subalphabets have probability 1 /2
of winning the update in the case of even representation.

If we would have simply a; + ¥i-, di (mod 2) in the even update the rule would still produce
assignments in the two subalphabets with equal probabilities. But only two different symbols
would be possible for any even a. The given rule produces all of the four symbols with equal
probabilities and consequently will not have bias to any direction. It is isotropic in this weaker
sense. Both the given and the simpler rule are conjugacy invariant.

2.2. BASIC PROPERTIES OF THE RULE

In the subsequent analysis we think of each lattice (or dual-lattice) site having a 1 x 1-cell centered
at it. This cell belongs to one of the subalphabets and in particular the boundaries between
domains of different subalphabets are then defined.

Call a closed rectangle with sides parallel to the diagonals of Z* (y = ) a diamond. The diamond
Ll of a bounded set in the plane is the smallest diamond containing the set. So for example the
diamond hull of four cells in a 2 x 2 arrangement centered at the origin is the set |y| + [« < 2. If
the set is unbounded then its diamond hull is a half space or -wedge defined in the obvious way.

The appeal of the majority voter rule is based on the following unique property.

Theorem 2.1. Given a domain generated from an invariant subalphabet suppose its diamond
lull does not intersect the diamond lull of any other such domain. Then the domain will remain
inside its diamond hull under the iteration of the majority voter c.a.
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Proof. Let B be a domain generated from the subalphabet S(® surrounded by a sea of symbols
(rom S, Let H(B) the the diamond hull of B. Suppose that we augment the set B by one cell
¢ € H(B) i.e. flip the assignment of one of the 5()-symbols making it into a §(®-symbol. The
number of corners the new cell has in common with B is between zero and four. By considering
the action of the rule in a neighborhood centered at each of these corners one can see that the
update in the augmented case is in S whenever it is so in the original case (but not necessarily
the converse). Hence F(B) ¢ F(BU {c}) where F is the global c.a. map. Extending the set B to
H(B) cell by cell we get by induction that F(B) C F(H(B)). But the diamond hull clearly has
the property that F (H(B)) C H(B) and the conclusion follows.

Remarks 1. Note that no reference is made to the digit distribution in the initial measure and
in particular the Bernoulliness of the digits is not assumed here. Indeed the result only hinges on
the structure of the assignment array.

2. If the diamond hulls of two domains intersect then it is possible that the domains could merge.
But again if the diamond hull of the union of the domains is isolated it is a confining diamond
lull.

The Theorem clearly hints towards annecaling dynamics. The random motion of the boundary of
a bounded domain should eventually allow an even smaller diamond hull to be fitted around the
domain. Hence any finite island should either merge to another one of the same type or as an
isolated island vanish in finite time. Asymptotically we should see arbitrarily large homogenous
domains. We now proceed to analyze the mechanisms behind this.

Suppose first that we have the lower half of the lattice L(1/2) below the diagonal y = z generated
from the subalphabet S(!) and the rest of the lattice sites form S(®. Denote the S(*)-domains
by B(@. If we now flip the assignments of the cells under the diagonal in the first quadrant we
introduce a boundary defect at origin. Call the lines L;: y =z —1and L, : y =z +1 the left
and right hull-lines. Let L be the line parallel to them and at equal distance from both. So now L
is the diagonal y = z. The defect is at the unique crossing point of L and 8B(). We say that this
defect has the off-set L.(0) — L;(0) — 1 = +1.

If we would reflect the domains with respect to y = z the lines L, and L; would be swapped. The
defect would still be at the origin but in this arrangement we define its off-set as L(0)— Li(0)+1 =
-1.

It is clear that under the iteration of the majority rule the left and right hull-lines remain the same
and so does the off-set of the defect. Moreover we have

Theorem 2.2. Suppose that the initial state is such that the digits are pp-distributed and
that the assignments are as above i.e. that we have a boundary defect on the line y = z. Then
the defect will almost surely perform a nearest neighbor random walk on the diagonal. Its location
at the i*P iterate is (X;, X;) where X; = 3 ;_, O and Af = %1 /2 with equal probabilities. The
increments A are independent.

Proof. Suppose that the boundary defect is originally at (zo,Zo). Its movement is uniquely
determined once we know the assignment of the cell in the dual-lattice at the location (zg, zo) . But
this is determined by the symbols in the four cells cornering to the defect. In this neighborhood
the representation of the subalphabets is even. Hence the digit at each of the cells permutes the
digit in the center cell and hence flips the assignment at (zo,Zo). So the increment is £1/2 with
cqual probability. In the following iterates the mechanism is similar: assignment is again flipped
by at least two independent digits at the corners of the backward cone. This is a pyramid with top
at the defect and bottom a square in the initial state with sides aligned with the axis and centered
at the top. Call the square at the i* iterate P;. Its side increases by 2 at each iterate thereby being
2i + 2 after i iterates. The increment at an arbitrary iterate is determined by the entries in the
square. It contains all the earlier squares (the past of the walk) and a frame of width one of new
independent entries in the initial state. The corner digits on the decreasing diagonal of the square
dyw and dge are independent of the past i.e. all the smaller squares inside P; and independent of
cach other. The top is permuted by these digits and since it is always in a 2-2-neighborhood the
increment of the defect is £(1/2,1/2) with probability 1/2 independently of the past.

Quick combinatorics will show that if we have a +1-defect and a —1-defect on the diagonal y = z
they annihilate upon collision i.e. the left and right hull lines will be of (horizontal) distance one
after that. In case of multiple defects the recombinations are always binary.
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Suppose that we have an alternating chain of defects on the diagonal. By this we mean a chain
where neighboring defects have a common hull-line and every +1-defect is between two —1-defects
and viceversa except at the ends (in case there is only a finite number of defects).

Corollary 2.3. Suppose that we have an initial distribution where the digits are uniformly
Bernoulli distributed and the assignment is such that we have an alternating chain on the diagonal
y = z. Under the iteration of the c.a. the defects perform individually symmetric nearest neighbor
random walks as in the Theorem 2.2. Moreover they are independent upto the time of collision with
a neighboring defect which results in an annihilation. The defects annihilate each other maximally
i.e. at most one is eventually left. If there is a positive initial density of defects on the line the
density decays proportional to 1/v/7 where i is the iteration index.

Proof. The motion of an individual defect is argued as in the proof of the preceding Theorem.
The independence of the increments of two defects at (X, X;) and (X}, X{) is an consequence of
the corner digits dyw,dse and d’,,,,d., in their corresponding squares P; and P| being distinct and
hence independent. Note that these digits are also independent of the pasts of both of the walks
since the latter are contained as subsquares inside P; and P;. The argument extends immediately
to an arbitrary subcollection of defects in the alternating arrangement. So we can utilize the results
for the case of independent random walks recorded e.g. in Griffeath’s notes. The decay rate follows
from there.

One can immediately extend the given formulation for any nonzero integral off-set. The motion
of these defects can be argued analogously to Theorem 2.2. but now new phenomena enter if the
off-set is not equal to %1 or in the case of just £1 off-sets we do not have the alternating chain.

Suppose that we have a single defect with off-set o, say o > 2 on the diagonal. Then under the
iteration of the majority voter c.a. the defect may branch into two defects with off-sets o, and o,
such that

o+o2=0 (%), 0102 2 1 (2.1)

The off-sets here are counted as before from left and right hull lines of the boundary segments
immediately to the left and right of the defect. The branching is reversible and the conservation of
the off-set (2.1) (*) also holds for the mergings. It is a immediate property of the majority voter
rule that the offspring of a branching defect always has off-set with the same sign as the parent.

If the defects merging have off-sets of opposite sign (2.1) (*) still holds. But now 0;0; < —1 so their
merging is irreversible by (2.1). A particular case of this is of course the annihilation considered
earlier (0; = —03).

One can summarize the implications of these principles in another topological statement.
Proposition 2.4 Suppose that we have a finite chain of defects with finite off-sets {o,,}"N=1 .

.y N(i) .
Denote the off-set sequence at the i*! iterate by {os,')} r Then of.') and N(i) are uniformly
n=
NG o0

n=1

bounded and the total off-set 22;('1) o' is constant and the total variation of the off-sets 3~
is nonincreasing,.

The irreversibility of the mergings of defects with opposite off-sets is the very reason for the
annealing behavior of this c.a. A curved boundary of a domain can be decomposed into a chain of
defects with appropriate off-sets. Their irreversible mergings result in a monotone decrease of the
total variation i.e. straightening of the boundary. In case of an isolated island this together with
the random motion of the contour implies the eventual shrinkage of the confining diamond hull.

The difficulties in proving a global anncaling result seem mostly just combinatorial. They are
due to the technicalities in handling defects with arbitrary off-sets and their initiation at corners
where hull-lines intersect. Higher order defects split constantly and since defects with different
off-sets move at different rates the treated off-set +1-case seems to be the only clean one. The
launching of defect pairs at corners where increasing and decreasing hull-lines intersect is somewhat
complicated. Note however that the Theorem 2.1. tells that an isolated domain never escapes from
such corner.



REFERENCES

Baxter, R.J. (1982). Exactly solved models in statistical mechanics. Academic Press.

Coven, E. and Paul, M. (1974). Endomorphisms of irreducible subshifts of finite type Mathe-
matical Systems Th. 8, 167-75.

Durrett, R. (1988). Lecture notes on particle systems and percolation. Wadsworth & Brooks/Cole.
Eloranta, K. (1993a). Partially permutive cellular automata Nonlinearity. 6, 1009-1023.
Eloranta, K. (1993b). Random walks in cellular automata Nonlinearity. 6, 1025-1036.

Eloranta, K. (1993c). The dynamics of defect ensembles in one-dimensional cellular automata
Helsinki University of Technology, Institute of Mathematics, Research Report A 322, (submit-
ted).

Griffeath, D. (1979). Additive and Cancellative Interacting Particle Systems. Springer Verlag.

Kitchens, B. and Schmidt, K. (1993). Mixing sets and relative entropies for higher dimensional
Markov shifts, preprint.

Ledrappier, F. (1978). Un champ markovien peut étre d’entropie nulle et mélangeant C. R. Acad.
Sc. Paris, Ser. A 287, 561-2.

Petersen, K. (1983). Ergodic Theory. Cambridge University Press.

Toffoli, T. and Margolus, N. (1987). Cellular Automata Machines: A New Environment for Mod-
eling. The MIT Press.



