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Introduction

The Ice Model

Lattic

The Ice model

Let G be a connected graph without self loops and with even vertex degree.
Orient each edge of G in the following way.

Definition

A vertex configuration is the arrangement of arrows arriving to and
departing from a vertex. It is legal for the Ice rule if there is the same number
of incoming and outgoing arrows. If there is a legal vertex configuration at
every vertex of G the arrow configuration is legal for the Ice model .

On G = Z? Ice is also known as the Six vertex model . It is a remarkably
good model for the physical ice. It's was analyzed by E. Lieb in the 60’s.
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The Ice Model

Lattic

The Ice model

Let G be a connected graph without self loops and with even vertex degree.
Orient each edge of G in the following way.

Definition

A vertex configuration is the arrangement of arrows arriving to and
departing from a vertex. It is legal for the Ice rule if there is the same number
of incoming and outgoing arrows. If there is a legal vertex configuration at
every vertex of G the arrow configuration is legal for the Ice model .

On G = Z? Ice is also known as the Six vertex model . It is a remarkably
good model for the physical ice. It's was analyzed by E. Lieb in the 60’s.

Until recent years little was known about this model in a bounded domain.
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Introduction

Latti
Bounded case

Lattices

Archimedean/uniform lattices  are the natural generalizations of the three
regular lattices. They are formed as vertex and edge sets of the tilings of the
plane by regular polygons. Of the 11 Archimedean lattices four support Ice:

square, triangular, Kagomé and 3.4.6.4. lattices  ( 6/20/18/36 vertex rules
respectively).

+1

Kagomé (K), 3.4.6.4. and triangular (T) lattices with height on the dual.
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Introduction

Bounded case: known unknowns

We will study these four vertex models in particular domains: the original
square lattice Ice in a diamond , the other three models in a hexagon (with
sides aligned with the underlying lattice).

Questions:
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We will study these four vertex models in particular domains: the original
square lattice Ice in a diamond , the other three models in a hexagon (with
sides aligned with the underlying lattice).

Questions:

@ When is a boundary arrangement of arrows legal i.e. allowing a fill-in?
When does it allow multiple fill-ins? Exponential number of fill-ins?
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Bounded case: known unknowns

We will study these four vertex models in particular domains: the original
square lattice Ice in a diamond , the other three models in a hexagon (with
sides aligned with the underlying lattice).

Questions:
@ When is a boundary arrangement of arrows legal i.e. allowing a fill-in?
When does it allow multiple fill-ins? Exponential number of fill-ins?

@ In case of multiple fill-ins, can the boundary influence the deep interior?
If so, what is the structure there generically like? These are questions
about the support of the measure of maximal entropy.
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Introduction

Bounded case

Bounded case: known unknowns

We will study these four vertex models in particular domains: the original
square lattice Ice in a diamond , the other three models in a hexagon (with
sides aligned with the underlying lattice).

Questions:
@ When is a boundary arrangement of arrows legal i.e. allowing a fill-in?
When does it allow multiple fill-ins? Exponential number of fill-ins?

@ In case of multiple fill-ins, can the boundary influence the deep interior?
If so, what is the structure there generically like? These are questions
about the support of the measure of maximal entropy.

@ Are the four vertex models behaving alike i.e. is there universality?

The investigation was initially motivated by the Dimer/Domino model studies
by Propp et. al. related to crystal growth, faceting etc.
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Dynamics Cycles, boundaries, connectivity
PCA

A basic observation: in an Ice configuration an unidirectional cycle can be
reversed (infinite cycle, too, if existing).

Definition

Depending on the lattice 1-triangle/1-square/1-lozenge/1-hexagon denotes
the smallest such polygon. If such 1-polygon is unidirectional we call it a
1-cycle and the reversal of this orientation a local move/flip .

Later we will also need to keep track of the geometric orientation of the
triangles and lozenges, but let’s keep it simple now.

Proposition

An unidirectional cycle always encloses a 1-cycle.

Proof is a simple argument utilizing the flux across the cycle.
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Dynamics Cycles, boundaries, connectivity
PCA

Boundary cosets

A cycle is off-boundary if it
doesn’t contain any of the
boundary arrows. A
configuration is frozen if it is
without off-boundary B Nl
1-cycles. A temperate
configuration has a directed
cycle boundary.

Basic question: Given a fixed boundary, a frozen configuration cannot be
deformed but what about the others?
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Dynamics Cycles, boundaries, connectivity
PCA

Connectivity

The set of Ice configurations with common boundary arrows in a diamond (for
square lattice) and in a hexagon (the other three Archimedean lattices) is
connected under 1-cycle reversals i.e. two such configurations can be
transformed to each other with a finite sequence of 1-cycle reversals.
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Dynamics Cycles, boundaries, connectivity

PCA

Connectivity

The set of Ice configurations with common boundary arrows in a diamond (for
square lattice) and in a hexagon (the other three Archimedean lattices) is
connected under 1-cycle reversals i.e. two such configurations can be
transformed to each other with a finite sequence of 1-cycle reversals.

Two lines of proof: 1. lexicographic sweep
“fixes” the difference between two
configurations with identical boundaries site by
site from the boundary on.

2. height argument converts each local
height minimum to a maximum eventually
connecting the configurations via a maximal
configuration, all with the given boundary
configuration.
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Dynamics Cycles, boundaries, connectivity
PCA

Connectivity, computation

Through counterexamples one establishes

Refinement

If for triangular/Kagomé/3.4.6.4 lattice any one of the 2/3/6 types of local
moves is disallowed the Theorem fails.

Kari Eloranta Dynamical Vertex Models



Dynamics Cycles, boundaries, connectivity
PCA

Connectivity, computation

Through counterexamples one establishes

Refinement

If for triangular/Kagomé/3.4.6.4 lattice any one of the 2/3/6 types of local
moves is disallowed the Theorem fails.

Computing Ice

1. Divide the arrow configurations into arrays of oriented polygons
@ 72: checkerboard: black and white/even and odd arrays of 1-squares.
@ T: two arrays of 1-triangles (A and 7).
@ K: two 1-triangle and one 1-hexagon arrays.

@ 3.4.6.4: two 1-triangle, one 1-hexagon and three 1-lozenge arrays (right
& left-leaning and straight standing).
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Dynamics c boundaries, connectivity

Probabilistic cellular automata

2. In an array flip each off-boundary 1-cycle independently w.p. 1/2. This
gives a random map Faray ON the configurations with a given boundary.
Independent sequences of F-maps define the PCAs:

@ 7% {Fe,Fo}.

o T: {Fa,Fu}.

@ K: {Fa,Fo,Frex} -

® 3.4.6.4: {FA,Fo,Frex, Fi_o, Fr_o,Fs_o}.

These PCAs, the Dynamic Ice models , are irreducible and aperiodic Markov
Chains hence ergodic . In all our runs they relaxed to the equilibrium i.e. to
the measures of maximal entropy at an exponential rate.
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Subdomains, entropy
Di ared
onal probabilities

Order and disorder

ry

ation on T/K

Frozen areas

If the boundary configuration is such that the flux into the domain is zero then
there is a fill-in.

Call the discrete derivative of the height along a contiguous boundary
segment the tilt of the segment. A boundary segment of maximal tilt +£1
uniquely determines the configuration in an interior wedge.

+1 -1

o +1 -1

Max tilt for Z?, wedges in a diamond and a frozen corner lozenge for T/K.
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Subdomains, entropy
Diamond squared

Order and disorder

Entropy

The entropy of a boundary condition  for a diamond/hexagon denotes the
exponential size of the set of its legal fill-inns: hy = [0g(i of confourationt | where
# denotes the number on the entire domain.

Proposition

On the square, triangular and Kagomeé lattices the entropy can attain
arbitrarily small positive values in the scaling limit.

For K, T consider the seed configuration on

the right. Subdomain F will remain frozen and v
the rest will have positive density of say even

1-triangles. Moving x rightwards gives

arbitrary pos. upper bound for entropy.

On Z2 the argument is analogous.
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joma >ntropy
iamond squared

Order and disorder

Arctic geometry in a Z2 diamond

Ridge roof boundary, vertex configuration and cumulative flip count.
102-diamond, equilibrium snapshot at 20.000 (rendered from 1-square
array), followed by 5.000 iterate flip collection. (DWBC)
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Order and disorder

Z? sectional probabilities

[ e

TS 200050 6070

3
0.4
0.4
0.4

520303050 60 70

T2 3030 50 60 70

T 2030050 6070

520303050 60 70

203030 50 60 70

L

.

520303050 60 70

203030 50 60 70

Horizontal and diagonal sections of orientation probabilities for 1-square side
arrows. 75-diamond, 2500 iterates at equilibrium. Flip density at the center
(diamond rotated by 45 degrees).
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Order and disorder

Arctic geometry
Demarcation on T /K

Arctic geometry from spatial phase transition

@ There is strong numerical evidence for the Arctic Circle phenomenon to
take place in Archimedean Ice models. The notion is originally from
dimer context and due to Jockush, Propp and Shor.

@ In the spatial scaling limit (lattice spacing — 0 in a unit polygon)
boundaries with extremal tilt segments yield unique phase transition
curves in the interior. A variational principle proof for the Z? dimers
(Cohn, Kenyon and Propp, later generalized to bipartite graphs by
Kenyon, Okounkov and Sheffield) can be extended to cover Z2 Ice.

@ Neither the domain shape nor the boundary configuration needs to be
finely tuned for the sharp separation of frozen and tempered
subdomains of the interior to take place.

@ Triangular and Kagomé lattice Ice behave in a similar way.
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Order and disorder

Demarcation on T/K

Arctic geometry on T/K

Cumulative flip count and vertex configuration snapshot at equilibrium on T.
(99-hexagon, 10° + 10° iterates at equilibrium, boundary cond. as before.)
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Order and disorder

Demarcation on T/K

Arctic geometry on T/K

+1

1 1 Boundary tilt, cumulative flip count and
filtered configuration at equilibrium on T.
(99-hexagon, 10° + 2 - 10° iterates.)

+1 +1
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Extremal tilt, entropy
\[eXs[e]

Extremal tilt on 3.4.6.4.

From the periodicity properties of 3.4.6.4. lattice one can derive

Proposition

Consider a 3.4.6.4. configuration on a hexagon and a n-block of consecutive
boundary arrows along any of its straight edges. If the boundary arrows are
of period eight in such a block the height over the block satisfies

|Ah| < (38n + 7)/4. For an arbitrary n-block of arrows, n > 15, the bound is
|Ah| < (13n + 28)/15. Hence if the boundary height exists in the scaling limit
and has tilt, the absolute value of the latter cannot exceed 13/15.

Now there are no boundary assignments of arrows with extremal tilt 4-1.

Kari Eloranta Dynamical Vertex Models



Extremal tilt, entropy
\[eXs[e]

Entropy

Proposition
In any 3.4.6.4. Ice configuration in the set of 1-triangles and 1-lozenges at

least 1/7 of them are unidirectional. If the scaling limit entropy for a given
boundary exist, it is bounded from below by ﬁ log 2.

Designing any low entropy
boundary is hard:  log 2

ﬁ can be found, seed as in the
center.
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Extremal tilt, entropy
No-go

For all 3.4.6.4. boundaries checked the equilibrium configurations appeared
rather homogeneous. This agrees with the “No-go”-result:

There are no frozen configurations in 3.4.6.4. Ice. The low entropy result of
the three other Archimedean Ice fails for 3.4.6.4. No spatial phase transition
in the scaling limit and no Arctic curves. No Archimedean universality.
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Extremal tilt, entropy
No-go
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