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The problem

Algorithm

The problem

Definition

Consider the spaces of infinite 1-dimensional sequences of symbols from
S ={1,2,3,...,d} with an exclusion rule:

(1) Xan = {x € S% X # Xisin), | €Z, N € N}

where f : N — N is a strictly increasing function.

One-sided case X(+d’f): Zin (1) replaced by N.
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The problem

Algorithm

The problem

Definition
Consider the spaces of infinite 1-dimensional sequences of symbols from
S ={1,2,3,...,d} with an exclusion rule:

(1) Xan = {x € S% X # Xisin), | €Z, N € N}

where f : N — N is a strictly increasing function.

One-sided case X(+d,f): Zin (1) replaced by N.

Basic questions: When is X4 1) non-empty? Can it be of exponential size?
What are the generic elements like? If only finite sequences, what are they
like?

The model was originally proposed by Mike Keane with f(n) = n?,
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Set up
Examples

The problem

Examples, linear f

S ={1,2} and f(n) = 2n.

Xo = 1 implies xox = 2,Vk # 0. But X, = 2 implies Xom =1, Vm # 1, a
contradiction. So Xz 2n) = 0.

In fact X(q,xn) = @ for all d, k > 2. Just exhaust S:

4 -4

3 -3 -3

2 -2 -2 -2

1 -1 -1 -1 -1
[ T T N B | | |
L B \ \ \

0 5 10 15 20

Figure: X(q,sn) = 0.
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Set up

The problem Examples

Examples, linear f

S ={1,2} and f(n) = 2n.

Xo = 1 implies xox = 2,Vk # 0. But X, = 2 implies Xom =1, Vm # 1, a
contradiction. So Xz 2n) = 0.

In fact X(q,xn) = @ for all d, k > 2. Just exhaust S:

4 -4

3 -3 -3

2 -2 -2 -2

1 -1 -1 -1 -1
[ T T N B | | |
L B \ \ \

0 5 10 15 20

Figure: X(q,sn) = 0.

But for S = {1,2} and f(n) = 2n — 1 we have periodic points (12)*, hence
X(2,2n—1) # 0. Favourable parity!
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Set up
Examples
Le ges
[

Algorithm

The problem

Examples, faster growing f

S={1,2}andf(n)=n", r=2,3,...
If Xo =1thenxy =1, Vi € Zso in particular x;r = 1, a contradiction.

Therefore X,y = 0.
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Set
The problem Setup

Examples, faster growing f

S={1,2}andf(n)=n", r=2,3,...
If Xo =1thenxy =1, Vi € Zso in particular x;r = 1, a contradiction.
Therefore X,y = 0.

Suppose there is m € N which does not divide any of the values f(n), n € N.
Then for d > m we can have periodic points.

For example X3 o) and X(fl,{primes}) are nonempty.
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Set up

The problem Examples

Examples, faster growing f

S={1,2}andf(n)=n", r=2,3,...
If Xo =1thenxy =1, Vi € Zso in particular x;r = 1, a contradiction.
Therefore X,y = 0.

Suppose there is m € N which does not divide any of the values f(n), n € N.
Then for d > m we can have periodic points.

For example X3 o) and X(fl,{primes}) are nonempty.

Xy d = 2 or 3 can immediately be seen to be empty. But ...
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Set up

The problem Examples

Non-trivial example

X(J;1 nl) could be non-trivial. There is a period (of length 25) which repeats

almost until the exclusion would violate it for the first time at 5041.

Figure: Lexicographically generated candidate for X(fl i) (from x; = 1). Segments,
from top: 1-200, 4950-5150, 10000-10200, 362950-363150, 499900-500100.

Periodicity contradicted at intervals of length nl,n =7,10,11,12. ..
but the sequence generation survives them at least half a million steps.
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The problem

Languages

If for any natural m there is a natural n such that we have m\f(n) then the
words satisfying the exclusion do not form a context-free language. Hence
the sequences do not form a regular language (sofic shift) either.

Proof by showing that the validity of the appropriate Pumping Lemma is
dependent on the (non)divisibility property.
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The problem

Powers

Algorithm

Considerd >3 andf(n)=n", r=2,3,....

@ None of the corresponding languages are context-free (by the Theorem)
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The problem

BIEGES
Powers

Algorithm

Considerd >3 andf(n)=n", r=2,3,....
@ None of the corresponding languages are context-free (by the Theorem)

] X(g,nZ) and X ; .2y are empty (elementary argument).
] X(j n2) = (¢ by a computer assisted proof. Max sequence length is 47.

@ For d = 5 one can generate sequences of length at least 170.

@ Random generation of sequences for X(E n2)’ d =5,6,7,10,15 and 20

suggest strongly that all these spaces are empty.
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The problem

BIEGES
Powers

Algorithm

Considerd >3 andf(n)=n", r=2,3,....

@ None of the corresponding languages are context-free (by the Theorem)

X(g,nZ) and X ; .2y are empty (elementary argument).
X(j n2) = (¢ by a computer assisted proof. Max sequence length is 47.

For d = 5 one can generate sequences of length at least 170.

e 6 ¢ ¢

Random generation of sequences for X(E n2)’ d =5,6,7,10,15 and 20

suggest strongly that all these spaces are empty.
... and it is indeed so because...

©
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The problem

Algorithm

Additive combinatorics

ForACNletA—A={a—a|anya,a e Aand A™ =AN{1,2,...,N}.
Question: If we insist that f(n) ¢ A — A for any natural n, what is A like?
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The problem

Powers

Algorithm

Additive combinatorics

ForACNletA—A={a—a|anya,a e Aand A™ =AN{1,2,...,N}.
Question: If we insist that f(n) ¢ A — A for any natural n, what is A like?
For n? (Lovasz’s conjecture) Furstenberg and Sarkézy showed in 1977-8:

Given § > 0 there is No(d) such that if N > No(5) and |A™)| > 6N then there
is natural n such that n> € A — A.

The proofs were ergodic theoretic and Fourier analytic respectively.
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Set up
Examples
Languages
Powers
Algorithm

The problem

Additive combinatorics

ForACNletA—A={a—a|anya,a e Aand A™ =AN{1,2,...,N}.
Question: If we insist that f(n) ¢ A — A for any natural n, what is A like?
For n? (Lovasz’s conjecture) Furstenberg and Sarkézy showed in 1977-8:

Given § > 0 there is No(d) such that if N > No(5) and |A™)| > 6N then there
is natural n such that n> € A — A.

The proofs were ergodic theoretic and Fourier analytic respectively.
In 1994 Balog, Pelikan, Pintz and Szemerédi proved

A

: )
For any natural k > 2 if n* ¢ A — A for all n then A1 « NS EEa

(< means “less than constant times”. Best ¢ has been worked out: 1/log 3.)
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The problem

Powers
Algorithm

Additive combinatorics applied

Given d symbols and f(n) = n*, set A = {{j}| x; =i} andletA, i=1,...,d
partition N (1-sided sequence defined everywhere). Then the last Theorem in
particular implies that if the exclusion is to hold for the sequence for the given
f, for sufficiently large n the densities of A;’s cannot add up to 1, a

contradiction. Hence all X(J;’nk) and therefore all X4 vy are empty, k = 2,3,...

The BPPS result has been extended for intersective polynomials: f € Z[x]
s.t. f(n) =0 (mod q), Vq natural, exactly the same condition as in the
language characterization.
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The problem

Powers
Algorithm

Additive combinatorics applied

Given d symbols and f(n) = n*, set A = {{j}| x; =i} andletA, i=1,...,d
partition N (1-sided sequence defined everywhere). Then the last Theorem in
particular implies that if the exclusion is to hold for the sequence for the given
f, for sufficiently large n the densities of A;’s cannot add up to 1, a

contradiction. Hence all X(J;’nk) and therefore all X4 vy are empty, k = 2,3,...

The BPPS result has been extended for intersective polynomials: f € Z[x]
s.t. f(n) =0 (mod q), Vq natural, exactly the same condition as in the
language characterization.

...S0 either the sequences try to be complicated and surely die or
are simple i.e. periodic and can live forever!

Note: n! grows superexponentially and is not included in the results above.
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The problem

Algorithm

Algorithm for one-sided sequences

Algorithm v2.0:

0.
1.

2.
3.

set M>1let Sj=Sat eachje{l,...,M}and set i =1.

if S;=0 then halt,

el se pick uniformy a random synbol s € S;.
update S; < Sj\{s}for all j=i+f(n)e{i+1,...,M}, neN.
if i=Mhaltand call full length,

i.e. each coordinate is chosen independently and uniformly but in such a way
as to respect the restrictions from all the relevant coordinates in its past.
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Set up
Full bloc
Mode

Probabilistic model

Probabilistic model

Dragnet Dj is the set of coordinates less than j restricting the assignment at j.
Its cardinality is a step-function, equal to d from the start of the first interval.

For f(n) = n? this is at coordinate j = d? + 1 and the i interval is from
(d+i—1)2+1to(d+i)?(lengthli =2(d +i) — 1).

If the sites on the dragnet D; support the entire alphabet S then at site j there
is a full block. First full block is possible at the start of the first interval.

dragnet
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model

Assume that all the symbols on {1,2,...,j — 1} have been laid out
independently and uniformly from S. Then

Proposition

Let B; be the event that one has the first full block at j in the i" interval. Then

(2) P(Bj)=pi=ﬁ > (kldkti.itﬂ

kr>1, r=1,...,
Kyt Akg=d+i—1

where the sum is d-fold over the given positive integers.

: ol a _ al d o
Recall the multinomial: (bl by ... bd) = b, by 2icDi =2

Proof is just combinatorics on the dragnet.
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model

On the interval with dragnet cardinality d 4+ i — 1 the sequence extension
halts w.p. pi and its length on the interval ~ Geom(p;).

For an alphabet S of size d one has foralli > 1

1 d—1 1 i
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model

On the interval with dragnet cardinality d 4+ i — 1 the sequence extension
halts w.p. pi and its length on the interval ~ Geom(p;).

For an alphabet S of size d one has foralli > 1

1 d—1 1 i

For the proof of the Lemma one has to consider the entries on the

(d +i —21)" level (from the top) of Pascal’s d-simplex. Multinomial Theorem
gives the total sum but for 1 — p; we need to bound its boundary sum. Note
that p; 1 1 is obvious, but its geometric lower bound requires some work.
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model

Theorem
Let the assumptions on the sequence be as above and f(n) = n?. Then a full
block materializes at j i.e. P(sequence generation halts at j) =
0 1<j<d?
(1—p)=%*""p, jinthe first interval
( (- pk)'k) (1—p)l—*~1-Skp,  jinthe i interval, i > 2

and the halting time distribution has a geometric tail.
The sequences generated are almost surely of finite length.
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model

Theorem
Let the assumptions on the sequence be as above and f(n) = n?. Then a full
block materializes at j i.e. P(sequence generation halts at j) =
0 1<j<d?
(1—p)=%*""p, jinthe first interval
( (- pk)'k) (1—p)l—*~1-Skp,  jinthe i interval, i > 2

and the halting time distribution has a geometric tail.
The sequences generated are almost surely of finite length.

The Theorem follows by combining the geometric halting probabilities on the
intervals, "uniformizing" them for a tail estimate (lx are not equal) and finally
using Borel-Cantelli.
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Set up
Full blocks
ersus data

Probabilistic model

REINES

@ The sum

Z < d+i—-1 )
B ki ks ... Kkq
kq+- kg =d+i—1
has asymptotically an exponential number
of summands both in d and i. To use the
Theorem for large d and i one needs to
find an efficient way to compute the p;’s.

For small i the sum can be compressed. E.g. fori = 4:

(DG 2 ()G 5%) (5 (0 7150)

but this gets complicated soon... Estimates for the tail if i > 1.
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Probabilistic model

REINES

@ While p; T 1 monotonically, the halting distribution is jagged:
At the i jump
P(haltsat (d +i)>+1) 1-p
P(halts at (d +i)2) — p

'piy1 >0 as i — oo

but far exceeds 1 earlier.
® The model applies verbatim at leastto all n*, k = 2,3, ...

@ The independence assumption seems heavy for small alphabet but less
so for a large one. But actually...
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Set up
Full blocks
Model versus data

Probabilistic model

Reality check for n? and d = 5,10 and 15

, J
. \

107 ;SN

e SN S RO
, < =

5.x107 \ 52107 . -~

.

.

.

.

1x107

Figure: Top row: empirical (blue/rough) and theoretical (red/smooth) halting probability
distributions. Bottom row: log of that above for the data.
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Set up
Full blocks
Model versus data

Probabilistic model

Dependencies, squared

Figure: A dependency mechanism affecting the termination probability. Dragnet at d.

P (seq. term. at d | k? 4+ n? # m2) <P (model term. at d | k% 4+ n? # mz)

P (seq. term.at d | k* 4+ n® = m2> >P (model term.atd | k* +n® = mz)
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Set up
Full blocks
Model versus data

Probabilistic model

Dependencies, squared

S -S ) X

Figure: A dependency mechanism affecting the termination probability. Dragnet at d.

P (seq. term. at d | k? 4+ n? # m2) <P (model term. at d | k% 4+ n? # mz)
P (seq. term.at d | k* 4+ n® = m2> >P (model term.atd | k* +n® = mz)

As k and n vary, the non-square case is far more likely to occur than the
square case. So termination probabilities of the independent model should
major the observed ones.

Recent trends in ETDS, Univ. of Baroda, Dec. 2012 K. Eloranta: Sequences with long range exclusions



Set up
Full blocks
Model versus data

Probabilistic model

Statistics of the sequence lengths for n?

Symbols | Empirical | Empirical | Model Model Sequences
d mean std. dev. mean std. dev.

4 27.2542 5.13374 23.992 5.23924 | 50-10°

5 39.5672 8.28983 39.2172 | 8.22516 | 80-10°

6 60.8247 13.5813 59.3666 | 11.9713 | 80-10°

7 89.4687 18.5912 84.982 16.5113 | 30-10°

10 209.315 38.2887 199.562 | 35.1369 | 20 -10°

15 566.87 92.2796 543.291 | 84.4349 | 10-10°

20 1156.57 | 170.829 | * 5.10°

Table: Data from randomly generated one-sided sequences and the probabilistic
model. Asterisks are due to missing coefficients (for i large).
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Set up
Full blocks
Model versus data

Probabilistic model

Conjecture

Based on the above one might venture to...

Conjecture

Consider the case of d symbols and f(n) = n?. Suppose T@ js the halting
instant of the Algorithm v2.0. For sufficiently rapidly growing M(d) there are
positive constants a and b such that as d — oo

o (T<d> — ad®/2

a1/ gx) — d(x) Vx € R

where @ is the cumulative distribution function of the standard normal N(0, 1)

-

Such CLT should hold for the probabilistic model as well (with parameters but
not exponents adjusted)

M(d) just needs to outgrow the off-set rate d°/2.
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Termination patterns
Finer detail Rest

Termination details for n?

One can record when the upcoming termination can be seen for the first time
(x-coord.) and how far ahead it will be (y):

1 50 100 150 200 .
1 - 1 |
10 10 b ;
15 18 p
20 20
2 2
1 50 100 150 200 =
1 50 100 150 200
1 - 1
5 L 5
10 10
15 15
20 20 B
2 2
1 50 100 150 200

Figure: Terminal jump distribution (log and sign, top and bottom resp.) ford = 5 and 15
(20 and 10 million samples).
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Termination patterns
Finer detail Rest

Termination details for n?

@ Left slope is due to the one-sidedness: exactly quantifiable.

@ For low values (d < 7 or so) some kind of number theoretic constraints
rule the behavior of the Algorithm hence the interior and the right edge
(it is not a boundary effect).

@ Beyond this range the termination seems essentially like a random
process.

@ The expected termination instant is far, far below the threshold coming
from the BPPS theorem!
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Termination patterns
Finer detail Rest

ar Xi v: mat h- ph/ 1204. 3439
or
www. mat h. hut . fi/ ~kve/research. htnl . en

Thank you!

il 8 Ll < ST SRRt TR A0
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Pumping lemma
Appendix Quadratic residues

CAP

A context-free language is recognized by a non-deterministic pushdown
automaton. Such language necessarily satisfies a Pumping Lemma:

Any sufficiently long string s, say |s| > k, can be written as s = uvxyz such
that

(i) lvxy| <k,
(ii) vy | = 1,
(ii) uv"xy"z is an allowed string for all natural n.

If either v or y vanishes but the other is non-trivial (hence (ii) is still valid) this
reduces to the Pumping Lemma of regular languages (languages
recognized by a finite state automaton).
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Pumping lemma
Appendix Quadratic residues

CAP

If p f a and the congruence x? = a (mod p) is soluble then a is called the
quadratic residue modulo p.

Mod p = 2 every integer is a quadratic residue. LetP = {1,2,...,p — 1}.
The basic distribution result is

Let p be an odd prime. Then exactly half of the integers a on P are quadratic
residues modulo p.

Little is known on the distribution of the residues beyond this. 1 is quadratic
residue and so is a if a is a square. Maximum number of residues between
non-residues is 2,/p + 1. If N(p) is the smallest non-residue in P then for

large p, N(p) < p/**¢ (by Burgess, -57). If RH holds then N(p) = c(Inp)?.
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Pumping
Appendix Quadratic residues

CAP

Initializations:

(* n2 blocks *)

d = 4; (* nunber of symbols x)

M = 200; (* length of sequences attenpted, nust be bigger than imax! «)

bl ocks = Table[ If[Integer Sqrt[i]] == True, 1, 0], i, M; (* block sites *)

(* ab-array initialization *)

ab = Table[0, d, M;

ab[[1]] = Flatten[Prepend[Drop[-blocks, -1], 1]];

ab[[2]] Fl atten[ Prepend[ Drop[ - bl ocks, -2], 0, 1]];

col [i] :=ab[[1, i]], ab[[2, i]], ab[[3, i]], ab[[4, i]] (» i th colum of ab *)

(* for FULL RUN for |S| =4, minimal output! =)

i =3; imax = 100; (* max seq. length constructed )

base = 0; (* running assunption for the third colum =)

maxl ength = 0; (* initialization for the maxi mal |ength sequence found *)
| owbacktrack = 10; (* highest index from which backtrack is notified *)

... and the code...
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Pumping
Appendix Quadratic residues

CAP

(Label [ fwd];
Wile[ i <= inax,
nmaxl ength = Max[ maxl ength, i];
locs = Intersection[ Flatten[Position[col[i], 0]],
base + 1, base + 2, base + 3, base + 4]; (* free symbols above base *)
If[Length[locs] == 0, loc =0, loc = Mn[locs] ]; Label [junpup];
0

If[loc ,

i =i - 1; If[i <= | owbacktrack, Print["cannot assign, will backtrack to: ", i] ];
Got of backtr];,

ab[[loc, i ]] = 1; base = loc;(* new synbol assignnent *)

bl ockcol s = Fl atten[ Prepend[ Drop[ bl ocks, -i], Table[0, i]]];

ab[[loc]] = ab[[loc]] - blockcols; (* assigning the new blocks *) ];

(* check if full blocks formed *)

Do[ If[ Flatten[ Position[col[Flatten[ Position[blockcols, 1] ][[chkcol]]], 0]] ==,
ab[[loc, i]] =0;

ab[[loc]] = ab[[loc]] + blockcols; (* taking the new assignnent and bl ocks away *)

If[ loc < Max[locs],

loc = locs[[Flatten[Position[locs, loc]][[1]] + 1]]; Goto[junpup];,(* try higher synbol =)
i =i - 1; Goto[backtr]; ] 1,

chkcol, Length[Flatten[ Position[blockcols, 1]]] ]; i =i + 1; base = 0; ]; Abort[];
Label [ backtr];

If[i ==3 & ab[[3, 3]] == 1,

Print["All done, furthest assignment: ", naxlength]; Abort[];]

If[i <= lowbacktrack, Print["recalling assignment at: ", i] ];

base = Flatten[Position[col[i], 1]][[ 1]]; (* position of the assignnent to be recalled *)
bl ockcol s = Fl atten[ Prepend[ Drop[ bl ocks, -i], Table[O, i]]];

ab[[base, i]] = 0;

ab[[base]] = ab[[base]] + blockcols; (* taking the assignnent and its bl ocks away *)
|f[base ==d, i =i - 1; Goto[backtr];, Goto[fwd]; ])

ecent trends in ETDS, Un . Sequences with long range exclusiol



	Appendix
	Appendix
	Pumping lemma
	Quadratic residues
	CAP



