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The problem

Definition

Consider the spaces of infinite 1-dimensional sequences of symbols from
S = {1, 2, 3, . . . , d} with an exclusion rule:

(1) X(d,f ) =
{

x ∈ SZ| xi 6= xi+f (n), i ∈ Z, n ∈ N
}

where f : N→ N is a strictly increasing function.

One-sided case X+
(d,f ): Z in (1) replaced by N.

Basic questions: When is X(d,f ) non-empty? Can it be of exponential size?
What are generic elements like? If only finite sequences, what are they like?

The model was originally proposed by Mike Keane with f (n) = n2.
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Examples, linear f

S = {1, 2} and f (n) = 2n.
x0 = 1 implies x2k = 2, ∀k 6= 0. But x2 = 2 implies x2m = 1, ∀m 6= 1, a
contradiction. So X(2,2n) = ∅.

In fact X(d,kn) = ∅ for all d , k ≥ 2. Just exhaust S:

0 5 10 15 20

1 −1 −1 −1 −1
2 −2 −2 −2

3 −3 −3
4 −4

Figure: X(d,5n) = ∅.

But for S = {1, 2} and f (n) = 2n − 1 we have periodic points (12)∗, hence
X(2,2n−1) 6= ∅. Favourable parity!

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Examples, faster growing f

S = {1, 2} and f (n) = nr
, r = 2, 3, . . .

If x0 = 1 then x2i = 1, ∀i ∈ Z so in particular x2r = 1, a contradiction.
Therefore X(2,nr ) = ∅.

Suppose there is m ∈ N which does not divide any of the values f (n), n ∈ N.

Then for d ≥ m we can have periodic points.
For example X(3,2n) and X+

(4,{primes}) are nonempty.

X+
(d,n!), d = 2 or 3 can immediately be seen to be empty. But ...

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Non-trivial example

... X+
(4,n!) could be non-trivial. There is a period (of length 25) which repeats

almost until the exclusion would violate it for the first time at 5041.

Figure: Lexicographically generated candidate for X+
(4,n!) (from x1 = 1). Segments,

from top: 1-200, 4950-5150, 10000-10200, 362950-363150, 499900-500100.

Periodicity contradicted at intervals of length n!, n = 7, 10, 11, 12 . . .

but the sequence generation survives them at least half a million steps.
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Languages

Proposition

If for any natural m there is a natural n such that we have m
∣

∣f (n) then the
words satisfying the exclusion do not form a context-free language. Hence
the sequences do not form a regular language (sofic shift) either.

Proof by showing that the validity of the Pumping lemma is dependent on the
(non)divisibility property.

Beyond this... need detailed info on f -residues.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Powers

For d ≥ 3 and f (n) = nr
, r = 2, 3, . . . it is known that:

None of the corresponding languages are context-free (by the
Proposition).

For X+
(3,n3)

sequences of length at least 300 can be generated.

X+
(3,n2)

and X(3,n2) are empty (elementary argument).

X+
(4,n2)

= ∅ by a computer assisted proof. Max sequence length is 47.

For d = 5 one can generate sequences of length at least 170.

Random generation of sequences for X+
(d,n2)

, d = 5, 6, 7, 10, 15 and 20
suggest strongly that all these spaces are empty.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Algorithm for one-sided sequences

Algorithm v2.0:

0. set M ≥ 1, let Sj = S at each j ∈ {1, . . . ,M} and set i = 1.
1. if Si = ∅ then halt,

else pick uniformly a random symbol s ∈ Si .

2. update Sj ← Sj \ {s} for all j = i + f (n) ∈ {i + 1, . . . ,M}, n ∈ N.

3. if i = M halt and call full length,

i.e. each coordinate is chosen independently and uniformly but in such a way
as to respect the restrictions from all the relevant coordinates in its past.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Probabilistic model for f (n) = n2

Dragnet Dj is the set of coordinates less than j restricting the assignment at
j. Its cardinality is a step-function, equal to d from the start of the first interval
at coordinate j = d2 + 1.

The i th interval is from (d + i − 1)2 + 1 to (d + i)2 (length li = 2(d + i)− 1).

If the sites on the dragnet Dj support the entire alphabet S then at site j there
is a full block. First full block is possible at the start of the first interval.

M

s −s −s −s

j

dragnet

1

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Probabilistic model for n2

Assume that all the symbols on {1, 2, . . . , j − 1} have been laid out
independently and uniformly from S. Then

Proposition

Let Bj be the event that one has the first full block at j in the i th interval. Then

(2) P(Bj) = pi =
1

dd+i−1

∑

kr ≥1, r=1,...,d
k1+···+kd =d+i−1

(

d + i − 1
k1 k2 . . . kd

)

where the sum is d-fold over the given positive integers.

Recall the multinomial:
(

a
b1 b2 ... bd

)

= a!
b1!b2!···bd !

,
∑d

i=1 bi = a.

Proof is just combinatorics on the dragnet.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Probabilistic model for n2

On the interval with dragnet cardinality d + i − 1 the sequence extension
halts w.p. pi and its length on the interval ∼ Geom(pi).

Lemma

For an alphabet S of size d one has for all i ≥ 1

1− pi < d
(

1− 1
d

)d−1 (

1− 1
d

)i

.

For the proof of the Lemma one has to consider the entries on the
(d + i − 1)th level (from the top) of Pascal’s d-pyramid. Multinomial Theorem
gives the total sum but for 1− pi we need to bound its boundary sum. Note
that pi ↑ 1 is obvious, but its geometric lower bound requires some work.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law



Introduction
Probabilistic model

Finer detail
Appendix

Set up
Full blocks
Model versus data

Probabilistic model for n2

On the interval with dragnet cardinality d + i − 1 the sequence extension
halts w.p. pi and its length on the interval ∼ Geom(pi).

Lemma

For an alphabet S of size d one has for all i ≥ 1

1− pi < d
(

1− 1
d

)d−1 (

1− 1
d

)i

.

For the proof of the Lemma one has to consider the entries on the
(d + i − 1)th level (from the top) of Pascal’s d-pyramid. Multinomial Theorem
gives the total sum but for 1− pi we need to bound its boundary sum. Note
that pi ↑ 1 is obvious, but its geometric lower bound requires some work.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law



Introduction
Probabilistic model

Finer detail
Appendix

Set up
Full blocks
Model versus data

Probabilistic model for n2

Theorem

Let the assumptions on the sequence be as above. Then a full block
materializes at j i.e. P(sequence generation halts at j) =










0 1≤ j ≤ d2

(1− p1)
[ j−d2−1] p1 j in the first interval

(

∏i−1
k=1(1− pk )

lk
)

(1− pi)
[ j−d2−1−

∑i−1
k=1 lk ]pi j in the ith interval, i ≥ 2

and the halting time distribution has a geometric tail.
The sequences generated are almost surely of finite length.

The Theorem follows by combining the geometric halting probabilities on the
intervals, "uniformizing" them for a tail estimate (lk are not equal) and finally
using Borel-Cantelli.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Remarks

The sum

∑

kr ≥1, r=1,...,d
k1+···+kd =d+i−1

(

d + i − 1
k1 k2 . . . kd

)

has asymptotically an exponential number
of summands both in d and i. To use the
Theorem for large d and i one needs to
find an efficient way to compute the pi ’s.

d+i−1

For small i the sum can be compressed. E.g. for i = 4:
(

d
1

)(

d + 3
1 . . . 1 4

)

+ 2
(

d
2

)(

d + 3
1 . . . 1 2 3

)

+

(

d
3

)(

d + 3
1 . . . 1 2 2 2

)

but this gets complicated soon... Estimates for the tail if i ≫ 1.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Remarks

While pi ↑ 1 monotonically, the halting distribution is jagged:
At the i th jump

P(halts at (d + i)2 + 1)
P(halts at (d + i)2)

=
1− pi

pi
pi+1 → 0 as i →∞

but far exceeds 1 earlier.

The independence assumption seems heavy for small alphabet but less
so for a large one. But actually...

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Reality check for n2 and d = 5, 10 and 15

20 40 60 80 100

0.02

0.04

0.06

50 100 150 200

1.´10-7

2.´10-7

3.´10-7

4.´10-7

5.´10-7

6.´10-7

100 200 300 400

0.005

0.010

0.015

100 200 300 400

1.´10-7

2.´10-7

3.´10-7

4.´10-7

5.´10-7

6.´10-7

200 400 600 800 1000 1200

0.001

0.002

0.003

0.004

0.005

200 400 600 800 1000 1200

2.´10-7

4.´10-7

6.´10-7

8.´10-7

1.´10-6

Figure: Top row: empirical (blue/rough) and theoretical (red/smooth) halting probability
distributions. Bottom row: log of that above for the data.
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Dependencies, squared

n

a b c d

2

k
2

n2

2
k

s −s −s x

Figure: A dependency mechanism affecting the termination probability. Dragnet at d .

P
(

full block at d
∣

∣ k2 + n2 not square
)

< P (full block at d)

< P
(

full block at d
∣

∣ k2 + n2 square
)

As k and n vary, the non-square case is far more likely to occur than the
square case. So termination probabilities of the independent model should
major the observed ones.
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Statistics of the sequence lengths

Symbols Empirical Empirical Model Model Sequences
d mean std. dev. mean std. dev.

4 27.2542 5.13374 23.992 5.23924 50 · 106

5 39.5672 8.28983 39.2172 8.22516 80 · 106

6 60.8247 13.5813 59.3666 11.9713 80 · 106

7 89.4687 18.5912 84.982 16.5113 30 · 106

10 209.315 38.2887 199.562 35.1369 20 · 106

15 566.87 92.2796 543.291 84.4349 10 · 106

20 1156.57 170.829 ∗ ∗ 5 · 106

Table: Data from randomly generated one-sided sequences and the probabilistic
model. Asterisks are due to missing coefficients (for i large).
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Conjecture

Based on the data one might venture to...

Conjecture

(i) All the spaces X+
(d,n2)

and X(d,n2), d ≥ 1 are empty.

(ii) Suppose T (d) is the halting instant of the Algorithm v2.0. For sufficiently
rapidly growing M(d) there are positive constants a and b such that as
d →∞

P
(

T (d) − ad5/2

bd15/7
≤ x

)

−→ Φ(x) ∀x ∈ R

where Φ is the cumulative distribution function of the standard normal N(0, 1).

CLT should hold for the probabilistic model as well (with parameters but not
exponents adjusted)

M(d) just needs to outgrow the off-set rate d5/2
.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Termination details for n2

One can record when the upcoming termination can be seen for the first time
(x-coord.) and how far ahead it will be (y):
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Figure: Terminal jump distribution (log and sign, top and bottom resp.) for d = 5 and 15
(20 and 10 million samples).
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Termination details for n2

Left slope is due to the one-sidedness: exactly quantifiable.

For about d ≤ 7 some (number theoretic?) constraints rule the interior
and the right edge.

Beyond this range of d the termination seems like a random process.

Randomness conspires in favor of showing ∅ !
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arXiv:math-ph/1204.3439
or
www.math.hut.fi/∼kve/research.html.en

Thank you!
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A context-free language is recognized by a non-deterministic pushdown
automaton. Such language necessarily satisfies a Pumping Lemma:

Lemma

Any sufficiently long string s, say |s| ≥ k , can be written as s = uvxyz such
that
(i) |vxy | ≤ k,
(ii) |vy | ≥ 1,
(iii) uvnxynz is an allowed string for all natural n.

If either v or y vanishes but the other is non-trivial (hence (ii) is still valid) this
reduces to the Pumping Lemma of regular languages (languages
recognized by a finite state automaton).

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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If p ∤ a and the congruence x2 ≡ a (mod p) is soluble then a is called the
quadratic residue modulo p.

Mod p = 2 every integer is a quadratic residue. Let P = {1, 2, . . . , p − 1}.
The basic distribution result is

Lemma

Let p be an odd prime. Then exactly half of the integers a on P are quadratic
residues modulo p.

Little is known on the distribution of the residues beyond this. 1 is quadratic
residue and so is a if a is a square. Maximum number of residues between
non-residues is 2

√
p + 1. If N(p) is the smallest non-residue in P then for

large p, N(p) < p1/2+ǫ (by Burgess, -57). If RH holds then N(p) = c(ln p)2
.

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law
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Initializations:

(* n2 blocks *)
d = 4; (* number of symbols *)
M = 200; (* length of sequences attempted, must be bigger than imax! *)
blocks = Table[ If[IntegerQ[Sqrt[i]] == True, 1, 0], i, M]; (* block sites *)

(* ab-array initialization *)
ab = Table[0, d, M];
ab[[1]] = Flatten[Prepend[Drop[-blocks, -1], 1]];
ab[[2]] = Flatten[Prepend[Drop[-blocks, -2], 0, 1]];
col[i] := ab[[1, i]], ab[[2, i]], ab[[3, i]], ab[[4, i]] (* i th column of ab *)

(* for FULL RUN for |S|=4, minimal output! *)
i = 3; imax = 100; (* max seq. length constructed *)
base = 0; (* running assumption for the third column *)
maxlength = 0; (* initialization for the maximal length sequence found *)
lowbacktrack = 10; (* highest index from which backtrack is notified *)

... and the code...

Lorentz Center, Dec. 11, 2012 K. Eloranta: The long arm of the law



Appendix
Pumping lemma
Quadratic residues
CAP

(Label[fwd];
While[ i <= imax,
maxlength = Max[maxlength, i];
locs = Intersection[ Flatten[Position[col[i], 0]],
base + 1, base + 2, base + 3, base + 4]; (* free symbols above base *)
If[Length[locs] == 0, loc = 0, loc = Min[locs] ]; Label[jumpup];
If[loc == 0,
i = i - 1; If[i <= lowbacktrack, Print["cannot assign, will backtrack to: ", i] ];
Goto[backtr];,
ab[[loc, i ]] = 1; base = loc;(* new symbol assignment *)
blockcols = Flatten[Prepend[Drop[blocks, -i], Table[0, i]]];
ab[[loc]] = ab[[loc]] - blockcols; (* assigning the new blocks *) ];
(* check if full blocks formed *)
Do[ If[ Flatten[ Position[col[Flatten[ Position[blockcols, 1] ][[chkcol]]], 0]] == ,
ab[[loc, i]] = 0;
ab[[loc]] = ab[[loc]] + blockcols; (* taking the new assignment and blocks away *)
If[ loc < Max[locs],
loc = locs[[Flatten[Position[locs, loc]][[1]] + 1]]; Goto[jumpup];,(* try higher symbol *)
i = i - 1; Goto[backtr]; ] ],
chkcol, Length[Flatten[ Position[blockcols, 1]]] ]; i = i + 1; base = 0; ]; Abort[];
Label[backtr];
If[i == 3 && ab[[3, 3]] == 1,
Print["All done, furthest assignment: ", maxlength]; Abort[];]
If[i <= lowbacktrack, Print["recalling assignment at: ", i] ];
base = Flatten[Position[col[i], 1]][[ 1]]; (* position of the assignment to be recalled *)
blockcols = Flatten[Prepend[Drop[blocks, -i], Table[0, i]]];
ab[[base, i]] = 0;
ab[[base]] = ab[[base]] + blockcols; (* taking the assignment and its blocks away *)
If[base == d, i = i - 1; Goto[backtr];, Goto[fwd]; ])
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