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Introduction The prot)!em

Algorithm

The problem

Definition

Consider the spaces of infinite 1-dimensional sequences of symbols from
S ={1,2,3,...,d} with an exclusion rule:

(1) X(d,f) = {X € SZ| 3 £ Xi+f(n)» ieZ ne N}

where f : N — N is a strictly increasing function.

One-sided case X(Jg,f): Zin (1) replaced by N.
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The problem

Definition

Consider the spaces of infinite 1-dimensional sequences of symbols from
S ={1,2,3,...,d} with an exclusion rule:

(1) X(d,f) = {X € SZ| 3 £ Xi+f(n)» ieZ ne N}

where f : N — N is a strictly increasing function.

One-sided case X(Jg,f): Zin (1) replaced by N.

Basic questions: When is X4 1) non-empty? Can it be of exponential size?
What are generic elements like? If only finite sequences, what are they like?

The model was originally proposed by Mike Keane with f(n) = n?,
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The problem
Examples

Introduction

Examples, linear f

S ={1,2} and f(n) = 2n.

Xo = 1 implies xox = 2,Vk # 0. But X, = 2 implies Xom =1, Vm # 1, a
contradiction. So Xz 2n) = 0.

In fact X(q,xn) = @ for all d, k > 2. Just exhaust S:

4 -4

3 -3 -3

2 -2 -2 -2

1 -1 -1 -1 -1
[ T T N B | | |
L B \ \ \

0 5 10 15 20

Figure: X(q,sn) = 0.
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S ={1,2} and f(n) = 2n.

Xo = 1 implies xox = 2,Vk # 0. But X, = 2 implies Xom =1, Vm # 1, a
contradiction. So Xz 2n) = 0.

In fact X(q,xn) = @ for all d, k > 2. Just exhaust S:
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3 -3 -3
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Figure: X(q,sn) = 0.

But for S = {1,2} and f(n) = 2n — 1 we have periodic points (12)*, hence
X(2,2n—1) # 0. Favourable parity!
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Examples, faster growing f

S={1,2}andf(n)=n", r=2,3,...
If Xo =1thenxy =1, Vi € Zso in particular x;r = 1, a contradiction.
Therefore X,y = 0.
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The problem

Introduction
Examples

Examples, faster growing f

S={1,2}andf(n)=n", r=2,3,...
If Xo =1thenxy =1, Vi € Zso in particular x;r = 1, a contradiction.
Therefore X,y = 0.

Suppose there is m € N which does not divide any of the values f(n), n € N.
Then for d > m we can have periodic points.

For example X3 o) and X(fl,{primes}) are nonempty.
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The problem

Introduction
Examples

Examples, faster growing f

S={1,2}andf(n)=n", r=2,3,...
If Xo =1thenxy =1, Vi € Zso in particular x;r = 1, a contradiction.
Therefore X,y = 0.

Suppose there is m € N which does not divide any of the values f(n), n € N.
Then for d > m we can have periodic points.

For example X3 o) and X(fl,{primes}) are nonempty.

Xy d = 2 or 3 can immediately be seen to be empty. But ...
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The problem

Introduction
Examples

Non-trivial example

X(J;1 nl) could be non-trivial. There is a period (of length 25) which repeats

almost until the exclusion would violate it for the first time at 5041.

Figure: Lexicographically generated candidate for X(fl i) (from x; = 1). Segments,
from top: 1-200, 4950-5150, 10000-10200, 362950-363150, 499900-500100.

Periodicity contradicted at intervals of length nl,n =7,10,11,12. ..
but the sequence generation survives them at least half a million steps.
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Introduction

Languages

Proposition

If for any natural m there is a natural n such that we have m\f(n) then the
words satisfying the exclusion do not form a context-free language. Hence
the sequences do not form a regular language (sofic shift) either.

Proof by showing that the validity of the Pumping lemma is dependent on the
(non)divisibility property.
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Introduction

Languages

Proposition

If for any natural m there is a natural n such that we have m\f(n) then the
words satisfying the exclusion do not form a context-free language. Hence
the sequences do not form a regular language (sofic shift) either.

Proof by showing that the validity of the Pumping lemma is dependent on the
(non)divisibility property.

Beyond this... need detailed info on f-residues.
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Powers

Algorithm

Ford >3andf(n)=n", r =2, 3,...itis known that:

@ None of the corresponding languages are context-free (by the
Proposition).
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The problem
Introduction

Powers

Algorithm

Ford >3andf(n)=n", r =2, 3,...itis known that:
@ None of the corresponding languages are context-free (by the
Proposition).

@ For X(Jg n3) Sequences of length at least 300 can be generated.

) X(-g,nz) and X3 .2y are empty (elementary argument).
] X(j,nz) = () by a computer assisted proof. Max sequence length is 47.
@ For d = 5 one can generate sequences of length at least 170.
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The problem
Introduction

Algorithm

Ford >3andf(n)=n", r =2, 3,...itis known that:

@ None of the corresponding languages are context-free (by the
Proposition).

For X(Jg n3) Sequences of length at least 300 can be generated.

X(g 02) and X3 .2y are empty (elementary argument).

X(Z n2) = (¢ by a computer assisted proof. Max sequence length is 47.

For d = 5 one can generate sequences of length at least 170.

e & ¢ © ¢

Random generation of sequences for X(Z n2)’ d =5,6,7,10,15 and 20

suggest strongly that all these spaces are empty.
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Introduction

Algorithm

Algorithm for one-sided sequences

Algorithm v2.0:

0. setM>1let S=Sat eachje{l,...,M}and set i=1
1. if Si=0 then halt,
el se pick uniformy a random synbol s € S;.
2. updateSj« S\ {s}for all j=i+f(n)e{i+1,...,M}, neN.
3. if i=Mhaltand call full length,

i.e. each coordinate is chosen independently and uniformly but in such a way
as to respect the restrictions from all the relevant coordinates in its past.
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Probabilistic model AP
Full bloc

Mode

Probabilistic model for f(n) = n?

Dragnet D; is the set of coordinates less than j restricting the assignment at

j. Its cardinality is a step-function, equal to d from the start of the first interval
at coordinate j = d? + 1.

The i™ interval is from (d +i — 1)> + 1 to (d +i)? (length ; = 2(d +i) — 1).

If the sites on the dragnet D; support the entire alphabet S then at site j there
is a full block. First full block is possible at the start of the first interval.

dragnet

)
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model for n?

Assume that all the symbols on {1,2,...,j — 1} have been laid out
independently and uniformly from S. Then

Proposition

Let B; be the event that one has the first full block at j in the i" interval. Then

(2) P(Bj)=pi=ﬁ > (kldkti.itﬂ

kr>1, r=1,...,
Kyt Akg=d+i—1

where the sum is d-fold over the given positive integers.

: ol a _ al d o
Recall the multinomial: (bl by ... bd) = b, by 2icDi =2

Proof is just combinatorics on the dragnet.
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model for n?

On the interval with dragnet cardinality d 4+ i — 1 the sequence extension
halts w.p. pi and its length on the interval ~ Geom(p;).

For an alphabet S of size d one has foralli > 1

1 d—1 1 i
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model for n?

On the interval with dragnet cardinality d 4+ i — 1 the sequence extension
halts w.p. pi and its length on the interval ~ Geom(p;).

For an alphabet S of size d one has foralli > 1

1 d—1 1 i

For the proof of the Lemma one has to consider the entries on the

(d +i —1)" level (from the top) of Pascal’s d-pyramid. Multinomial Theorem
gives the total sum but for 1 — p; we need to bound its boundary sum. Note
that p; 1 1 is obvious, but its geometric lower bound requires some work.
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model for n?

Theorem
Let the assumptions on the sequence be as above. Then a full block
materializes at j i.e. P(sequence generation halts at j) =
0 1<j<d?
(1 —p)=9*""p, jinthe first interval
( - pk)'k) (1—p)lI=*~1-Sakp,  jinthe i interval, i > 2

and the halting time distribution has a geometric tail.
The sequences generated are almost surely of finite length.
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Set up
Full blocks
Model versus data

Probabilistic model

Probabilistic model for n?

Theorem
Let the assumptions on the sequence be as above. Then a full block
materializes at j i.e. P(sequence generation halts at j) =
0 1<j<d?
(1 —p)=9*""p, jinthe first interval
( - pk)'k) (1—p)lI=*~1-Sakp,  jinthe i interval, i > 2

and the halting time distribution has a geometric tail.
The sequences generated are almost surely of finite length.

The Theorem follows by combining the geometric halting probabilities on the
intervals, "uniformizing" them for a tail estimate (lx are not equal) and finally
using Borel-Cantelli.
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Set up
Full blocks
ersus data

Probabilistic model

REINES

@ The sum

Z < d+i—-1 )
B ki ks ... Kkq
kq+- kg =d+i—1
has asymptotically an exponential number
of summands both in d and i. To use the
Theorem for large d and i one needs to
find an efficient way to compute the p;’s.

For small i the sum can be compressed. E.g. fori = 4:

(DG 2 ()G 5%) (5 (0 7150)

but this gets complicated soon... Estimates for the tail if i > 1.
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Probabilistic model

REINES

@ While p; T 1 monotonically, the halting distribution is jagged:
At the i jump

P(haltsat (d +i)>+1) 1-—p

i . .
Plhalisat (d 1 1))~ p P70 as o

but far exceeds 1 earlier.

@ The independence assumption seems heavy for small alphabet but less
so for a large one. But actually...
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Set up
Full blocks
Model versus data

Probabilistic model

Reality check for n? and d = 5,10 and 15

ot =\ axi0? =N N
- \\ ax107 -
a0 ax107 - \
25107 ‘\__ ° 2x107 \ . * \
110 "‘-‘(__, ) . et h"' :

v 50 100 150 200 100 200 300 400 | " e

Figure: Top row: empirical (blue/rough) and theoretical (red/smooth) halting probability
distributions. Bottom row: log of that above for the data.
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Set up
Full blocks
Model versus data

Probabilistic model

Dependencies, squared

S -S ) X

Figure: A dependency mechanism affecting the termination probability. Dragnet at d.

P (fuu block at d | k? + n? not square) < P (full block at d)

<P (full block at d | k* +n? square)
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Set up
Full blocks
Model versus data

Probabilistic model

Dependencies, squared

S -S ) X

Figure: A dependency mechanism affecting the termination probability. Dragnet at d.

P (fuu block at d | k? + n? not square) < P (full block at d)
<P (full block at d | k* +n? square)

As k and n vary, the non-square case is far more likely to occur than the
square case. So termination probabilities of the independent model should
major the observed ones.
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Set up
Full blocks
Model versus data

Probabilistic model

Statistics of the sequence lengths

Symbols | Empirical | Empirical | Model Model Sequences
d mean std. dev. mean std. dev.

4 27.2542 5.13374 23.992 5.23924 | 50-10°

5 39.5672 8.28983 39.2172 | 8.22516 | 80-10°

6 60.8247 13.5813 59.3666 | 11.9713 | 80-10°

7 89.4687 18.5912 84.982 16.5113 | 30-10°

10 209.315 38.2887 199.562 | 35.1369 | 20 -10°

15 566.87 92.2796 543.291 | 84.4349 | 10-10°

20 1156.57 | 170.829 | * 5.10°

Table: Data from randomly generated one-sided sequences and the probabilistic
model. Asterisks are due to missing coefficients (for i large).
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Set up
Full blocks
Model versus data

Probabilistic model

Conjecture

Based on the data one might venture to...

Conjecture

(i) All the spaces X(Jg w2y Nd X(g n2), d > 1 are empty.
(i) Suppose T@ is the halting instant of the Algorithm v2.0. For sufficiently

rapidly growing M(d) there are positive constants a and b such that as

d —
T _ ad®/?
P bd15/7

where ¢ is the cumulative distribution function of the standard normal N(0, 1).
- ~

gx)—wb(x) vx € R

CLT should hold for the probabilistic model as well (with parameters but not
exponents adjusted)

M(d) just needs to outgrow the off-set rate d*/2.
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Termination patterns
Finer detail Rest

Termination details for n?

One can record when the upcoming termination can be seen for the first time
(x-coord.) and how far ahead it will be (y):

1 50 100 150 200 .
1 - 1 |
10 10 b ;
15 18 p
20 20
2 2
1 50 100 150 200 =
1 50 100 150 200
1 - 1
5 L 5 .
10 10 .
15 15
20 20 B
2 2 "
1 50 100 150 200

Figure: Terminal jump distribution (log and sign, top and bottom resp.) ford = 5 and 15
(20 and 10 million samples).
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Termination patterns
Finer detail Rest

Termination details for n?

@ Left slope is due to the one-sidedness: exactly quantifiable.

@ For aboutd < 7 some (number theoretic?) constraints rule the interior
and the right edge.

@ Beyond this range of d the termination seems like a random process.
@ Randomness conspires in favor of showing () !
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Termination patterns
Finer detail Rest

ar Xi v: mat h- ph/ 1204. 3439
or
www. mat h. hut . fi/ ~kve/research. htnl . en

Thank you!

il 8 Ll < ST SRRt TR A0
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Pumping lemma
Appendix Quadratic residues

CAP

A context-free language is recognized by a non-deterministic pushdown
automaton. Such language necessarily satisfies a Pumping Lemma:

Any sufficiently long string s, say |s| > k, can be written as s = uvxyz such
that

(i) lvxy| <k,
(ii) vy | = 1,
(ii) uv"xy"z is an allowed string for all natural n.

If either v or y vanishes but the other is non-trivial (hence (ii) is still valid) this
reduces to the Pumping Lemma of regular languages (languages
recognized by a finite state automaton).
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Pumping lemma
Appendix Quadratic residues

CAP

If p f a and the congruence x? = a (mod p) is soluble then a is called the
quadratic residue modulo p.

Mod p = 2 every integer is a quadratic residue. LetP = {1,2,...,p — 1}.
The basic distribution result is

Let p be an odd prime. Then exactly half of the integers a on P are quadratic
residues modulo p.

Little is known on the distribution of the residues beyond this. 1 is quadratic
residue and so is a if a is a square. Maximum number of residues between
non-residues is 2,/p + 1. If N(p) is the smallest non-residue in P then for

large p, N(p) < p/?*¢ (by Burgess, -57). If RH holds then N(p) = c(Inp)?.
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Pumping
Appendix Quadratic residues

CAP

Initializations:

(* n2 blocks *)

d = 4; (* nunber of symbols x)

M = 200; (* length of sequences attenpted, nust be bigger than imax! «)

bl ocks = Table[ If[Integer Sqrt[i]] == True, 1, 0], i, M; (* block sites *)

(* ab-array initialization *)

ab = Table[0, d, M;

ab[[1]] = Flatten[Prepend[Drop[-blocks, -1], 1]];

ab[[2]] Fl atten[ Prepend[ Drop[ - bl ocks, -2], 0, 1]];

col [i] :=ab[[1, i]], ab[[2, i]], ab[[3, i]], ab[[4, i]] (» i th colum of ab *)

(* for FULL RUN for |S| =4, minimal output! =)

i =3; imax = 100; (* max seq. length constructed )

base = 0; (* running assunption for the third colum =)

maxl ength = 0; (* initialization for the maxi mal |ength sequence found *)
| owbacktrack = 10; (* highest index from which backtrack is notified *)

... and the code...

entz Center, Dec. 11, 201 The long arm of the law




Pumping
Appendix Quadratic residues

CAP

(Label [ fwd];
Wile[ i <= inax,
nmaxl ength = Max[ maxl ength, i];
locs = Intersection[ Flatten[Position[col[i], 0]],
base + 1, base + 2, base + 3, base + 4]; (* free symbols above base *)
If[Length[locs] == 0, loc =0, loc = Mn[locs] ]; Label [junpup];
0

If[loc ,

i =i - 1; If[i <= | owbacktrack, Print["cannot assign, will backtrack to: ", i] ];
Got of backtr];,

ab[[loc, i ]] = 1; base = loc;(* new synbol assignnent *)

bl ockcol s = Fl atten[ Prepend[ Drop[ bl ocks, -i], Table[0, i]]];

ab[[loc]] = ab[[loc]] - blockcols; (* assigning the new blocks *) ];

(* check if full blocks formed *)

Do[ If[ Flatten[ Position[col[Flatten[ Position[blockcols, 1] ][[chkcol]]], 0]] ==,
ab[[loc, i]] =0;

ab[[loc]] = ab[[loc]] + blockcols; (* taking the new assignnent and bl ocks away *)

If[ loc < Max[locs],

loc = locs[[Flatten[Position[locs, loc]][[1]] + 1]]; Goto[junpup];,(* try higher synbol =)
i =i - 1; Goto[backtr]; ] 1,

chkcol, Length[Flatten[ Position[blockcols, 1]]] ]; i =i + 1; base = 0; ]; Abort[];
Label [ backtr];

If[i ==3 & ab[[3, 3]] == 1,

Print["All done, furthest assignment: ", naxlength]; Abort[];]

If[i <= lowbacktrack, Print["recalling assignment at: ", i] ];

base = Flatten[Position[col[i], 1]][[ 1]]; (* position of the assignnent to be recalled *)
bl ockcol s = Fl atten[ Prepend[ Drop[ bl ocks, -i], Table[O, i]]];

ab[[base, i]] = 0;

ab[[base]] = ab[[base]] + blockcols; (* taking the assignnent and its bl ocks away *)
|f[base ==d, i =i - 1; Goto[backtr];, Goto[fwd]; ])
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