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Vertex Models



Vertex Models

Definition (Zero Flux Vertex Model on the Square Lattice)

Assign arrows or unoriented edges between a vertex and its nearest
neighbors in Z* respecting the rule: there is the same number of
incoming and outgoing arrows. The model consists of all
configurations in which the rule is satisfied at every lattice point.

No spin variables involved. Three well known examples:
| 2 1 1
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Dotted line segments mean unoriented edges, numbers multiplicities.

Six-vertex (lce) rule: The frame on the left.
15-vertex rule: The entire set.
19-vertex rule: Add the missing corner rules for isotropy.



Vertex Models

Note that while e.g. the eight-vertex model shares a similar generating
mechanism, sources and sinks separate it into a different class of models.

Six-vertex rule has been intensely studied and serves here as a reference
model. For preceding work on the 15/19-vertex models, see e.g. Izergin
& Korepin, Fateev & Zamolodchikov (-81), Batchelor (with twisted
boundary condition, -91), Inami & Odake & Zhang (-96), Pant and Wu
(knot invariant, -97), more recently e.g. Galleas, Garbali, Hagendorf.
Work mostly in unbounded or toral domains.

We will consider the models on the simplest bounded domain, a square,
with special boundary condition(s) that will make comparison to Ice
Model/Alternating Sign Matrix and still earlier dimer results possible.



he main questions

In Ice one has a fully packed loop soup and all entropy arises from a single
action, the reversal of unidirectional loops. Short loops are the main
carriers of entropy and with them one can localize the entropy generation.

15/19-vertex models relax the loop packing allowing a diluted loop
soup. Entropy generation mechanism is more general because of
unoriented edges. One has multiple generating actions each with its own
distribution within the domain. How does this more involved entropy

geometry look like?

Implications in terms of limit shapes?



Static bits



Definition

11
252
If one crosses a lattice arrow pointing left, it increases by one, if to the

Height function is a mapping from dual lattice Z> + (3, 1) to integers.
right, decreases by one and if no arrow encountered, height stays
constant. Given a vertex configuration on a simply connected domain it
is unique up to an additive constant. The graph of the height function
can be wieved either as a stepped surface or as a Lipschitz-surface over
the configuration (tilt extrema £1).

Definition

Suppose that the configurations ¢ and ¢’ on a domain have the same
boundary configuration. Let C and C' be the solids under their height
surfaces. Let c = ¢’ if C D C’'. Then = defines a partial order on the
configurations.



Definition

(L,V,A) is a distributive lattice if for all x, y

XA (yVz)=(xAy)V(xAz) and with min/max (\/V) interchanged.
Distributive lattices have always maximal and minimal elements.

Proposition

Our configuration sets on a square with the given partial order form a
distributive lattice.

This facilitates e.g. irreducibility and coalescing arguments to work on
the configuration spaces.



Dynamical Models



Dynamical Models

For the vertex models here any unidirectional loop or unidirectional
infinite path can be reversed to generate a new configuration. In
19-vertex model additionally any such loop/path can be converted

undirected or vice versa.

To implement an efficient algorithm one should do the allowed
perturbations using the smallest legal actions/local moves/flips.



Dynamical Models

For the vertex models here any unidirectional loop or unidirectional
infinite path can be reversed to generate a new configuration. In
19-vertex model additionally any such loop/path can be converted
undirected or vice versa.

To implement an efficient algorithm one should do the allowed
perturbations using the smallest legal actions/local moves/flips.

The left action | suffices to generate all six-vertex configurations.

I and Il together with rotation by 7 generates for 15-vertex rule.
Heights noted around and inside squares.



The minimal set of local moves for the 19-vertex rule (up to rotation and
reflection):
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Transition probabilities next to arrows. All reflections and rotations are
included.



The three action sets cannot generate illegal configurations from legal
ones i.e. these are necessary in each case. Conversely by careful study of
the height surfaces one can show that these suffice.

One can utilize a deposition/sublimation model. Depending on the case
one uses one or two types of volumes: unit cubes or upright 1 x 1 x 2
-pieces. With these one can fill local minima, cut down local maxima and
reach the maximal/minimal element for the given boundary condition.
Irreducibility of the configuration sets under the action sets follow.



The three action sets cannot generate illegal configurations from legal
ones i.e. these are necessary in each case. Conversely by careful study of
the height surfaces one can show that these suffice.

One can utilize a deposition/sublimation model. Depending on the case
one uses one or two types of volumes: unit cubes or upright 1 x 1 x 2
-pieces. With these one can fill local minima, cut down local maxima and
reach the maximal/minimal element for the given boundary condition.
Irreducibility of the configuration sets under the action sets follow.

Theorem (lIrreducibility and ergodicity)

Given a 19-vertex configuration on a bounded domain, any other legal
configuration with the same boundary condition can be generated from
the former using a finite sequence of elementary actions I'-1V. A strict
subset of actions will not suffice. When O < b,q < 1 the Markov Chain
on the graph of legal configurations is ergodic.

The conclusions hold for the subsets of actions of six-vertex and
15-vertex rules. Unique stationary measures exist for all.



Computational bits

The actual computation of 6/15/19-vertex model is most naturally done
on a N x N array of symbols each coding the arrows around a lattice unit
square (so 2* = 16 or 3* = 81 symbols in the alphabet). This array is a
diamond enclosing the domain square.

The boundary condition is imposed on the diamond, specifically on its
4 x 2N lattice edges. When done right it will force a desired boundary
condition in the inscribed N x N square in all the models.

The Probabilistic Cellular Automaton (PCA) which implements the MC
acts on the diamond array split as a checkerboard. The black and white
subsets are updated alternatively. On each color the updating is done
according to the MC, sitewise independently, followed by the update of
the other color subset for consistency.

Some loss: uniform weights.
Some gain: MC is monotone chain and CFTP is available. 10



Boundaries




DWBC

For the sake of simplicity and comparisons we restrict to square domain.
The Izergin-Korepin Domain Wall Boundary Condition or its
relaxation are used:

¥
,
L,
p
Y

DWBC is on the inscribed square. The diamond is due to computation

alone. On the right the ridge roof height. It forces DWBC inside. il



Proposition

In a 15-vertex configuration an unoriented interior edge implies
unoriented boundary edges. Hence with DWBC the 15-vertex rule
reduces to the six-vertex rule.

To choose genuinely non-six-vertex 15-vertex boundary conditions one
observes:

Proposition
For a given boundary condition the number of unoriented edges in the

15-vertex fill-in configuration is constant. An unoriented path cannot
branch under 15-vertex rule.

Not true for 19-vertex configurations. We'll see DWBC can bound highly
non-trivial and non-six-vertex-like configurations.
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Non-DWBC for 15-vertex

Two generalizations of the ridge roof (left, imposes DWBC):
DWBC K T

NW-SE cross cuts of the initial height over the diamond.

The horizontal flats correspond initially to unoriented SW-NE staircases.
Their end points are fixed on the boundary. Under the iteration they
behave like non-branching random bridges stretching across the diamond.

13



Samples




15-vertex equilibria, non-DWBC

LT

e

K-boundary, a pair of blank staircases at the top. Diamond tilted by 7/4;
ridge is horizontal. Densities of Il, | and I+1l. 2062 diamond/square,
equilibrium iterates 61-70.000. Below left action Il weighted 10-fold.
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Equilibrium from T-type boundary condition for 15-vertex model:

| ’/:A.. . . Q
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Cumulative distributions of I, I and I4I1l. On the right the locations of
the unoriented edges at termination. Square 1062, ridge horizontal,
10.000 iterates at the equilibrium.
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19-vertex parametrization (and back to DWBC)

> Bottom (all b) is six-vertex since no
arrow vacancy can come about.

1-enumeration point of ASM in the q ., .
. 1 . Hot Ice" \
disordered phase (A = 3). Limit 1 —e
. : \"Anti—lce"
shape a bit off circle. . .
» “Anti-lce": no trace of Ice-action since
o Mo o ® [ ] ®
no unidirectional loops are reversed.
» b+ q is the unidirectional 1-loop e °
creation-annihilation rate, ~lce b
“lce-temperature”. 1

e Sample points.
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DWBC and density

DWBC (which is just “maximal tilt boundary segments without
cul-de-sacs”) can be generalized from the square to more complicated

domains yielding more exotic limit shapes to 6/19-vertex.

On the boundary the arrow density is one, but

Proposition (Interior arrow density)
The arrow density of a 19-vertex configuration over a domain
with DWBC is always at least 1/2. Bound is tight.

We do not know of any boundary condition with density of boundary
arrows strictly below one yielding non-trivial limit shapes.

Ergo, all subsequent 19-vertex samples are with DWBC at equilibrium.
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From Ice to Hot-lce

Configurations after 40.000 iterates with DWBC on the maximal square

inside 1062 diamond/square. 1-square arrow arrangements color coded.

Ice ((b,q) = (0,0)) Hot-lce ((1,1))
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I', births I', annihilations

oooon

I', births I', annih. or revers.

o] |

I', births I', reversals

Action densities at equilibrium. Captlons indicate the (sub)actlons.
Top row: Anti-Ice ((b,q) = (0,1)). Middle row: diagonal g = b > 0.
Bottom row: 1-weight ASM i.e. Ice-case ((b,0), any b).

1062 square. Lighter is more active. Individually scaled for contrast.
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Same data, enhanced:

I', births I', annihilations 1 \%
I, births I', annih. or revers. v

I, births I, reversals B 11 v

Rough order of the intensities: IlI>11">1'(ann. & rev.)>I"(birth)~IV.
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lce Anti-lce ((0 1))
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Action I’ skewed

Actions I'(reversal), Il and IV do not change the arrow density.

Action Il changes the arrow density and it alters the geometry of
oriented paths. Moreover it is the highest intensity action.

As p | 0, the oriented paths should straighten out and form thinner
ensembles, hence further lowering the intensities of other actions.

As p 1 1, the oriented paths get more convoluted, perhaps approaching
lattice filling. This should even out the action distribution differences.

The effect should be most pronounced in the directions of lattice axes,
but what are the other global consequences?
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I', annih. or revers.

ooom

I', annih. or revers. \2

HEE

I’, annih. or revers. I8 11 v

Skewed action 11" at (b, g) = (0,1). Middle row: Anti-lce (p = 3). Top

row: p = % and bottom row: p = %. No I'-births in any: first blank

column removed. 1062 square.
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I’, annih. or revers. (A2

I', annih. or revers.

I, annih. or revers.

Skewed action IlI" at (b, q) = (0, 1) enhanced rendering. Middle row is

\ —

Anti-lce (p = ) Top row: p = £ and bottom row p =
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