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Consider the spaces of infinite 1-dimensional sequences of symbols from
S ={1,2,3,...,d} with an exclusion rule :

(1) X = {X € S%Ix # X1, 1 €2, N €N}

where f : N — N is a strictly increasing function.

One-sided case X(Jg’f): Zin (1) replaced by N or No.
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The problem

Definition

Consider the spaces of infinite 1-dimensional sequences of symbols from
S ={1,2,3,...,d} with an exclusion rule :

(1) X(d,f) = {X € SZ| 3% =5 Xi+f(n)» ieZ ne N}

where f : N — N is a strictly increasing function.

One-sided case X(Jg,f): Zin (1) replaced by N or No.

Basic questions : When is X4 1) non-empty? Can it be of exponential size?
What are the generic elements like? If only finite sequences, how long?

Originally by Paul Erdés (graph problem) and Mike Keane with f(n) = n?.
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(1) (linear growth of f)LetS = {1,2} and f(n) = 2n.

Xo = 1 implies xpx = 2,Vk # 0. Butx, = 2 implies xo;, =1, Ym # 1, a
contradiction. So X3 on) = 0.

In fact X(g kny = @ for all d, k > 2 just by exhausting S. X4 5n) = 0:
(d,kn) (d,5n)

4 -4

3 -3 -3

2 -2 -2 -2

1 -1 -1 -1 -1
Ly I I I
1 T T T

0 5 10 15 20

(2) (linear growth) For S = {1,2} and f(n) = 2n — 1 we have the periodic
points (12)*, hence X3 on_1) # 0. Favourable parity!
(3) (powers) S ={1,2}andf(n)=n", r=2,3,...If xop = 1then

Xoi = 1, Vi € Z so in particular x,r = 1, a contradiction. Therefore
X(Z.H ) o U
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(1) (linear growth of f)LetS = {1,2} and f(n) = 2n.

Xo = 1 implies xpx = 2,Vk # 0. Butx, = 2 implies xo;, =1, Ym # 1, a
contradiction. So X3 on) = 0.

In fact X(g kn) = @ for all d, k > 2 just by exhausting S. Xg 50y = 0
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(2) (linear growth) For S = {1,2} and f(n) = 2n — 1 we have the periodic
points (12)*, hence X on_1) # 0. Favourable parity!

(powers) S = {1,2}andf(n) =n", r =2,3,...If xg = 1then
Xoi = 1, Vi € Z soin particular xor = 1, a contradiction. Therefore
X{Z.H ) — 0.
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Finite sequences

Examples

(1) (linear growth of f)LetS = {1,2} and f(n) = 2n.
Xo = 1 implies xpx = 2,Vk # 0. But X, = 2 implies Xo;, = 1, Vm # 1, a
contradiction. So X3 on) = 0.

In fact X(g,kny = @ for alld, k > 2 just by exhausting S. X4 s5n) =

4 -4

3 -3 -3

2 -2 -2 -2

1 -1 -1 -1 -1
| | | | | | | | |
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(2) (linear growth) For S = {1,2} and f(n) = 2n — 1 we have the periodic
points (12)*, hence X2 2n_1) # 0. Favourable parity!

(3) (powers) S ={1,2}andf(n)=n", r =2,3,...If xop =1 then

Xoi = 1, Vi € Z so in particular xor = 1, a contradiction. Therefore
X(zynr) = @
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(4) (no divisors) Suppose there is m € N which does not divide any of the
values f(n), n € N. Then for d > m one can have periodic points.
For example X3 ony and X(j’{primes}) are nonempty.
(5) (lots of divisors) X(E nl) the cases d = 2 and 3 can easily be checked to
be empty. But X(fm!) could be non-trivial. There is a period (of length 25)

which repeats until the exclusion would violate it for the first time at 5041.

Lexicographically generated X(j ) (from x; = 1). Segments, from top:

1-200, 4950-5150, 10000—10206, 362950-363150, 499900-500100.
Periodicity is contradicted at intervals of length n!,n = 7,10,11,12. ..
but the sequence generation survives them at least half a million steps.
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Around 1990 Y. Katznelson closed the lacunary case:

If inf {F2) > 1 then X(a 1) # 0 for a finite d.

Proof via toral dynamics. Bounds for d exist.
As for divisibility one can argue:

Theorem

If for any m € N there is n € N such that m divides f(n), then the words
satisfying the exclusion do not form a context-free language. Hence the
sequences do not form a regular language (sofic shift) either.

Proof by showing that the validity of the appropriate Pumping Lemma is
dependent on the (non)divisibility property.
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Two results

Around 1990 Y. Katznelson closed the lacunary case:

Theorem

If inf {GEL > 1 then X4 1) # 0 for afinite d.

Proof via toral dynamics. Bounds for d exist.
As for divisibility one can argue:

Theorem

If for any m € N there is n € N such that m divides f(n), then the words
satisfying the exclusion do not form a context-free language. Hence the
sequences do not form a regular language (sofic shift) either.

Proof by showing that the validity of the appropriate Pumping Lemma is
dependent on the (non)divisibility property.
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Ford >3andf(n)=n", r=23,...

@ The corresponding languages are not context-free.

] X(B_”2> = 0 (hence also X3 12y = ) by an elementary argument.
® X(A_IWQ) = () by a computer assisted proof. Max sequence length is 47.

@ For d = 5 one can generate sequences of length at least 170.
@ Random generation of sequences for X(l{..ﬂ)* d =5,6,7,10,15 and 20
suggest strongly that all these spaces are empty...
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Back to powers

Ford >3andf(n)=n", r=23,...
@ The corresponding languages are not context-free.

° X(g 02y = 0 (hence also X3 n2y = 0) by an elementary argument.

) X(an) = () by a computer assisted proof. Max sequence length is 47.
@ For d = 5 one can generate sequences of length at least 170.
@ Random generation of sequences for X * y d =5,6,7,10,15 and 20

(d,n2
suggest strongly that all these spaces are empty...
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ForACNletA—A={a—a'|anya,a cA}and AM =AN{1,2,...,N}.
Question : If we insist that f(n) ¢ A — A for any natural n, what is A like?

For n? (Lovéasz’s conjecture) Furstenberg and Sarkozy showed in 1977-8:

Theorem

Given § > 0 there is No(8) such that if N > No(8) and |[A™)| > 6N then there
is natural n such that n®> € A — A.

The proofs were ergodic theoretic and Fourier analytic respectively.
In 1994 Balog, Pelikan, Pintz and Szemerédi proved furthermore

Theorem

For any natural k > 2 if n“ ¢ A — A for all n then %

1
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Additive combinatorics/recurrence

ForACNletA—A={a—a'|anya,a €A}and A™ =AN{1,2,...,N}.
Question : If we insist that f(n) ¢ A — A for any natural n, what is A like?

For n? (Lovasz’s conjecture) Furstenberg and Sarkézy showed in 1977-8:

Theorem

Given 6 > 0 there is No(8) such that if N > No(8) and |[A™)| > 6N then there
is natural n such that n> € A — A.

The proofs were ergodic theoretic and Fourier analytic respectively.
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Additive combinatorics/recurrence

ForACNletA—A={a—a'|anya,a €A}and A™ =AN{1,2,...,N}.
Question : If we insist that f(n) ¢ A — A for any natural n, what is A like?

For n? (Lovasz’s conjecture) Furstenberg and Sarkézy showed in 1977-8:

Theorem

Given 6 > 0 there is No(8) such that if N > No(8) and |[A™)| > 6N then there
is natural n such that n> € A — A.

The proofs were ergodic theoretic and Fourier analytic respectively.

In 1994 Balog, Pelikdn, Pintz and Szemerédi proved furthermore
Theorem

: Q)
For any natural k > 21if n ¢ A — Afor all n then "= < qorigmgoon J
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Xy = 0, hence also X ) =0 forallr € N.

Given d symbols and f(n) = n¥, let A; = {{j}| x; = i} and suppose that

A, i =1,...,d partition N. Then the last Theorem implies that if the
exclusion is to hold for the sequence for the given f, for sufficiently large n the
densities of Aj’s cannot add up to 1, a contradiction. O
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Additive combinatorics/recurrence

Corollary

Xy =0, hence also X § . =0 forallr € N.

Proof.

Given d symbols and f(n) = n*, let A, = {{j}| x; = i} and suppose that

Ai, i =1,...,d partition N. Then the last Theorem implies that if the
exclusion is to hold for the sequence for the given f, for sufficiently large n the
densities of Aj’s cannot add up to 1, a contradiction. O

These result have been extended for intersective polynomials: f € Z|x] s.t.
f(n) =0 (mod q), Vq € N, exactly the same condition as in the language
characterization.

The image {f(n)|n € N} for such f is a example of a Poincaré sequence
which in turn is a recurrence set .

AMS, Washington, March 7, 2015 K. Eloranta: Sequences with long range exclusions



Questions: How long sequences are possible e.g. when f(n) = n??
Termination patterns?

Generating samples from X(‘

d,n2)"

Algorithm v2.0:

0.
1.

2.
3.

set M>1let Sy=Sat eachje{l,..., M} and set i =1.

if Si=0 then halt,

el se pick uniformy a random synbol s € S;.
update Sj < Sj\{s}for all j=i+f(n)e{i+1,..., M}, n € N.
if i=Mhalt and cal |l full length ,

i.e. each coordinate is chosen independently and uniformly but in such a way
as to respect the restrictions from all the relevant coordinates in its past.
M is a maximal length, a guess initially.
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Finite sequences

Questions: How long sequences are possible e.g. when f(n) = n??

; +
Generating samples from X(d

Termination patterns?

,n2)

Algorithm v2.0:

0.
1.

2.
3.

set M>1let S =Sat eachje{l,...,M}and set i=1.

if Sg=0 then halt,

el se pick uniformy a random synbol s € S;.
update S; <+ Sj\{s}for all j=i+f(n)e{i+1,...,M}, neN.
if i=Mhalt and call fulllength ,

i.e. each coordinate is chosen independently and uniformly but in such a way
as to respect the restrictions from all the relevant coordinates in its past.
M is a maximal length, a guess initially.
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Set up
Full blocks
Model versus data

Probabilistic model

Dragnet Dj is the set of coordinates less than j restricting the assignment at j.
Its cardinality is a step-function, equal to d from the start of the first interval .

For f(n) = n? this is at coordinate j = d? + 1 and the i interval is from
(d+i—1)2+1to(d+i)?(itslengthis i = 2(d +i) — 1).

If the sites on the dragnet D; support the entire alphabet S then at site j there
is a full block . First full block is possible at the start of the first interval.

dragnet
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Probabilistic model

Assume that all the symbols on {1,2,...,j — 1} have been laid out
independently and uniformly from S. Then

Proposition
Let B; be the event that one has the first full block at j in the i" interval. Then

1 d+i—-1
(2) Pr(B])_pl_dd+i—1 Z ) (klkz...kd>

kr>1, r=1,...,
ky kg =d+i—1

where the sum is d-fold over the given positive integers.

. ‘ol a _ al d o
Recall the multinomial: (b1 by ... bd) = b, by 2ic D=2

Proof is combinatorics on the dragnet.
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On the interval with dragnet cardinality d + i — 1 the sequence extension
halts w.p. p; and its length on the interval ~ Geom(p;).

For an alphabet S of size d one has for all i > 1

1 d—1 1 i
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Set up
Full blocks
Model versus data

Probabilistic model

On the interval with dragnet cardinality d 4+ i — 1 the sequence extension
halts w.p. pi and its length on the interval ~ Geom(p;).

Lemma
For an alphabet S of size d one has foralli > 1

1 d—1 1 i

For the proof of the Lemma one has to consider the entries on the

(d +i —1)" level (from the top) of Pascal’s d-simplex. Multinomial Theorem
gives the total sum but for 1 — p; we need to bound its boundary sum. Note
that p; 1 1 is obvious, but its geometric lower bound requires some work.

AMS, Washington, March 7, 2015 K. Eloranta: Sequences with long range exclusions



The problem

P Set up
Probabilistic model
Full blocks
Finer detail
. Model versus data
Appendix

Probabilistic model

Theorem

Let the assumptions on the sequence be as above and f(n) = n?. Then a full
block materializes at j i.e. Pr(sequence generation halts at j) =

0 1<j<d?
(1- pl)“_d_z_” p.  jin the first interval
(MA@ —po*) (@ = p)! ===k jinthe " interval, i > 2

and the halting time distribution has a geometric tail.
The sequences generated are almost surely of finite length.
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Set up
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Probabilistic model

Theorem
Let the assumptions on the sequence be as above and f(n) = n?. Then a full
block materializes at j i.e. Pr(sequence generation halts at j) =
0 1<j<d?
(1—p)I~%*""p,  jinthe first interval
( (- pk)'k) (1—p)l—*~1-Skp,  jinthe i interval, i > 2

and the halting time distribution has a geometric tail.
The sequences generated are almost surely of finite length.

The Theorem follows by combining the geometric halting probabilities on the
intervals, "uniformizing" them for a tail estimate (Ix are not equal) and finally
using Borel-Cantelli.
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Remarks
@ The sum

S ( d+i-1 > N
kr>1, r=1,....d ki ko ... kg
kq+---+kg=d+i—1

has asymptotically an exponential number
of summands both in d and i. To use the
Theorem for large d and i one needs to
find an efficient way to compute the p;’s.
@ While p; T 1 monotonically, the halting distribution is jagged:
At the i jump

> o
Pr(halts at (d +i)° +1) 1 Pini >0 as i— oo

Pr(halts at (d +i)?) pi

but far exceeds 1 earlier.
@ The model applies verbatim to other jump sequences f(n).
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Figure: Top row: empirical (blue) and model (red) halting probability distributions.
Bottom row: log of the blue data above. Columns left to right: d = 5,10 and 15.
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Figure: A dependency mechanism affecting the termination probability. Dragnet at d.

Pr (seq. term. at d | k? 4+ n? # mz) < Pr (model term. at d | k% +n? # mz)

Pr (seq. term.at d | k* +n® = mz) > Pr (model term.at d | k* +n® = m2)

For exact analysis one would need to account the Pythagorean triples.
However as k and n vary, the non-triples case is far more likely to occur than
the triples case. So termination probabilities of the independent model should
major the observed ones.
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Dependencies, squared

Figure: A dependency mechanism affecting the termination probability. Dragnet at d.

Pr (seq. term. at d | k? 4+ n? # mz) < Pr (model term. at d | k? 4+ n? # mz)
Pr (seq. term. at d | k? 4+ n® = mz) > Pr (model term.at d | k? +n? = m2)

For exact analysis one would need to account the Pythagorean triples.
However as k and n vary, the non-triples case is far more likely to occur than
the triples case. So termination probabilities of the independent model should
major the observed ones.
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Set up
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Model versus data

Statistics of the sequence lengths for n?

Symbols | Empirical | Empirical | Model Model Sequences
d mean std. dev. mean std. dev.

4 27.2542 5.13374 23.992 5.23924 | 50-10°

5 39.5672 8.28983 39.2172 | 8.22516 | 80-10°

6 60.8247 13.5813 59.3666 | 11.9713 | 80-10°

7 89.4687 18.5912 84.982 16.5113 | 30-10°

10 209.315 38.2887 199.562 | 35.1369 | 20 -10°

15 566.87 92.2796 543.291 | 84.4349 | 10-10°

20 1156.57 | 170.829 | * 5.10°

Table: Data from randomly generated one-sided sequences and the probabilistic

model. Asterisks are due to missing coefficients (for i large).
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Conjecture

Based on the above one might venture to...

Conjecture

Consider the case of d symbols and f(n) = n?. Suppose T js the halting
instant of the Algorithm v2.0. For sufficiently rapidly growing M(d) there are
positive constants a and b such that as d — co

5 <T<d> — ad®/2

bd15/7 gx) — d(x) vx € R

where @ is the cumulative distribution function of the standard normal N(0, 1).

Such CLT should hold for the probabilistic model as well (with parameters but
not exponents adjusted)

M(d) just needs to outgrow the off-set rate d°/2.
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Termination details for n2

1 50 100 150 200 . .
1 1 —_
L —— ! T
10 1c "
15 15
20 20
24 24
1 50 100 150 200 i
1 50 100 150 200
1 N 1
5 LT 5
10 1c
15 15
20 20
24 24
1 50 100 150 200

Figure: Distribution of the instant when the upcoming termination can be seen for the
first time (x) and how far ahead it will be (y). Log and sign, top and bottom resp. for

d = 5 and 15 (20 and 10 million samples). No boundary effect from the right (actual
horizon M used much higher).

Algorithm termination seems to turn into a random process as d increases.
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www, mat h. aal to. fi/ ~kve/research. htm

Thank you!

NS, e = e e e ey R
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Pumping lemma
Appendix Quadratic residues
CAP

A context-free language is recognized by a non-deterministic pushdown
automaton (i.e. has one stack). Such language satisfies a Pumping Lemma :

Lemma

Any sufficiently long string s, say |s| > k, can be written as s = uvxyz such
that

(i) Ivxy| <k,

(i) [vy| > 1,

(ii) uv"xy"z is an allowed string for all natural n.

If either v or y vanishes but the other is non-trivial (hence (ii) is still valid) this
reduces to the Pumping Lemma of regular languages (languages
recognized by a finite state automaton).
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Appendix Quadratic residues
CAP

If p f a and the congruence x? = a (mod p) is soluble then a is called the
quadratic residue modulo  p.

Mod p = 2 every integer is a quadratic residue. LetP = {1,2,...,p — 1}.
The basic distribution result is
Lemma

Let p be an odd prime. Then exactly half of the integers a on P are quadratic
residues modulo p.

Little is known on the distribution of the residues beyond this. 1 is quadratic
residue and so is a if a is a square. Maximum number of residues between
non-residues is 2,/p + 1. If N(p) is the smallest non-residue in P then for

large p, N(p) < p/**¢ (by Burgess, -57). If RH holds then N(p) = c(Inp)?.
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Initializations:

(* n2 blocks *)

d = 4; (* nunber of symbols x)
M= 200; (* length of sequences attenpted, nust be bigger than inmax! =*)
bl ocks = Table[ If[IntegerSqrt[i]] == True, 1, O], i, M; (* block sites *)

(* ab-array initialization *)

ab = Table[0, d, M;

ab[[1]] = Flatten[Prepend[Drop[-blocks, -1], 1]];

ab[[2]] = Flatten[Prepend[Drop[-blocks, -2], 0, 1]];

col[i] :=ab[[1, i]], ab[[2, i]], ab[[3, i]], ab[[4, i]] (* i th colum of ab )

(* for FULL RUN for |S| =4, minimal output! =)

i =3; imax = 100; (* max seq. length constructed *)

base = 0; (* running assunption for the third colum x)

maxl ength = 0; (* initialization for the maxi mal |ength sequence found *)
I owbacktrack = 10; (* highest index from which backtrack is notified *)

... and the code...
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(Label [ fwd];
Wile[ i <= inax,
nmaxl ength = Max[ maxl ength, i];
locs = Intersection[ Flatten[Position[col[i], 0]],
base + 1, base + 2, base + 3, base + 4]; (* free symbols above base *)
If[Length[locs] == 0, loc =0, loc = Mn[locs] ]; Label [junpup];
0

If[loc ,

i =i - 1; If[i <= | owbacktrack, Print["cannot assign, will backtrack to: ", i] ];
Got of backtr];,

ab[[loc, i ]] = 1; base = loc;(* new synbol assignnent *)

bl ockcol s = Fl atten[ Prepend[ Drop[ bl ocks, -i], Table[0, i]]];

ab[[loc]] = ab[[loc]] - blockcols; (* assigning the new blocks *) ];

(* check if full blocks formed *)

Do[ If[ Flatten[ Position[col[Flatten[ Position[blockcols, 1] ][[chkcol]]], 0]] ==,
ab[[loc, i]] = 0;

ab[[loc]] = ab[[loc]] + blockcols; (* taking the new assignnent and bl ocks away *)

If[ loc < Max[locs],

loc = locs[[Flatten[Position[locs, loc]][[1]] + 1]]; Goto[junpup];,(* try higher synbol =)
i =i - 1; Goto[backtr]; ] 1,

chkcol, Length[Flatten[ Position[blockcols, 1]]] ]; i =i + 1; base = 0; ]; Abort[];
Label [ backtr];

If[i ==3 & ab[[3, 3]] == 1,

Print["All done, furthest assignment: ", naxlength]; Abort[];]

If[i <= lowbacktrack, Print["recalling assignment at: ", i] ];

base = Flatten[Position[col[i], 1]][[ 1]]; (* position of the assignnent to be recalled *)
bl ockcol s = Fl atten[ Prepend[ Drop[ bl ocks, -i], Table[0, i]]];

ab[[base, i]] = 0;

ab[[base]] = ab[[base]] + blockcols; (* taking the assignnent and its bl ocks away *)
|f[base ==d, i =i - 1; Goto[backtr];, Goto[fwd]; ])
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